Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T15:19:41.485Z Has data issue: false hasContentIssue false

Superatomic Boolean algebras constructed from morasses

Published online by Cambridge University Press:  12 March 2014

Peter Koepke
Affiliation:
Mathematisches Institut, Beringstrasse 4, D-5300 Bonn 1, Germany
Juan Carlos Martínez
Affiliation:
Facultad De Matemáticas, Universidad De Barcelona, Gran Vía 585, 08007 Barcelona, Spain

Abstract

By using the notion of a simplified (κ, 1)-morass, we construct κ-thin-tall, κ-thin-thick and, in a forcing extension, κ-very thin-thick superatomic Boolean algebras for every infinite regular cardinal κ.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baumgartner, J. E. and Shelah, S., Remarks on superatomic Boolean algebras, Annals of Pure and Applied Logic, vol. 33 (1987), pp. 109129.CrossRefGoogle Scholar
[2]Devlin, K. J., Constructibility, Springer-Verlag, Berlin, 1984.CrossRefGoogle Scholar
[3]Jech, T., Set theory, Academic Press, New York, 1978.Google Scholar
[4]Juhász, I. and Weiss, W., On thin-tall scattered spaces, Colloquium Mathematicum, vol. 40 (1978), pp. 6368.CrossRefGoogle Scholar
[5]Kunen, K., Set theory, North-Holland, Amsterdam, 1980.Google Scholar
[6]Martínez, J. C., A consistency result on thin-tall superatomic Boolean algebras, Proceedings of the American Mathematical Society, vol. 115 (1992), pp. 473477.CrossRefGoogle Scholar
[7]Roitman, J., Height and width of superatomic Boolean algebras, Proceedings of the American Mathematical Society, vol. 94 (1985), pp. 914.CrossRefGoogle Scholar
[8]Roitman, J., A very thin thick superatomic Boolean algebra, Algebra Universalis, vol. 21 (1985), pp. 137142.CrossRefGoogle Scholar
[9]Roitman, J., Superatomic Boolean algebras, Handbook of Boolean algehras(Monk, J. D. and Bonnet, R., editors), North-Holland, Amsterdam, 1989, pp. 719740.Google Scholar
[10]Velleman, D. J., ω-morasses, and a weak form of Martin's axiom provable in ZFC, Transactions of the American Mathematical Society, vol. 285 (1984),pp. 617627.Google Scholar
[11]Velleman, D. J., Simplified morasses, this Journal, vol. 49 (1984), pp. 257271.Google Scholar
[12]Weese, M., On cardinal sequences of Boolean algebras, Algebra Universalis, vol. 23 (1986), pp. 8597.CrossRefGoogle Scholar