Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T03:53:36.844Z Has data issue: false hasContentIssue false

Slim models of Zermelo set theory

Published online by Cambridge University Press:  12 March 2014

A. R. D. Mathias*
Affiliation:
Départment de Mathématiques et Informatique, Université de la Réunion, BP 7151, F97715 Saint Denis de la Réunion, Messageries Cedex 9, FranceOutre-Mer, E-mail: ardm@univ-reunion.fr, E-mail: ardm@dpmms.cam.ac.uk

Abstract

Working in Z + KP, we give a new proof that the class of hereditarily finite sets cannot be proved to be a set in Zermelo set theory, extend the method to establish other failures of replacement, and exhibit a formula Φ(λ, a) such that for any sequence ⟨Aλλ a limit ordinal⟩ where for each λ. Aλλ2, there is a supertransitive inner model of Zermelo containing all ordinals in which for every λAλ = {a ∣ Φ(λ, a)}.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ack]Ackermann, W., Die Widerspruchsfreiheit der allgemeinen Mengenlehre, Mathematische Annalen, vol. 114 (1937), pp. 305315.CrossRefGoogle Scholar
[B1]Boffa, M., Axiome et schema de fondement dans le système de Zermelo, Bulletin Acad. Polon. Sc. sér. sc. math., vol. 17 (1969), pp. 113115.Google Scholar
[B3]Boffa, M., Une infinité d’axiomes de l’infini mutuellement indépendants dans le système de Zermelo, Comptes Rendus de l’ Académie des Sciences, Paris, vol. 268 (1969), p. 205.Google Scholar
[B2]Boffa, M., Axiom and Scheme of Foundation, Bulletin de la Société Mathématique de Belgique, vol. 22 (1970), pp. 242247.Google Scholar
[BR]du Bois-Reymond, P., Eine neue Theorie der Convergenz und Divergenz von Reihen mit positiven Gliedern, Crelle’s, Journal für Mathematik, vol. 76 (1873). pp. 6191.Google Scholar
[E]Enderton, H. B., Elements of Set Theory, Academic Press, 1977.Google Scholar
[JS]Jensen, R. B. and Schröder, M., Mengeninduktion und Fundierungsaxiom, Archiv der Mathematik und Logik der universität Grundlagenforschung, vol. 12 (1969), pp. 119133, MR 42 #2934.CrossRefGoogle Scholar
[M2]Mathias, A. R. D., Notes on Mac Lane Set Theory, CRM Preprint núm. 348, gener 1997.Google Scholar
[M3]Mathias, A. R. D., The Strength of Mac Lane Set Theory, Annals of Pure and Applied Logic, to appear.Google Scholar
[M1]Mathias, A. R. D., On sequences generic in the sense of Prikry, Journal of the Australian Mathematical Society, vol. 15 (1973), pp. 409414, MR 48 #10809.CrossRefGoogle Scholar
[Mo]Moschovakis, Y. N., Notes on Set Theory, Springer Verlag, 1994.CrossRefGoogle Scholar
[Sk]Skolem, Th., Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, Matematikerkongressen i Helsingfors den 4–7 Juli 1922, Den femte skandinaviska matematikerkongressen, Redogörelse, Akademiski Bokhandeln, Helsinki, 1923, pp. 217232, also, Mengenlehre (U. Felgner, editor), Wissenschaftliche Buchgesellschaft, Darmstadt, 1979, pp. 57–72, and, in English translation, From Frege to Gödel (J. van Heijenoort, editor). Harvard University Press, 1967, pp. 290–301.Google Scholar