Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T12:54:07.255Z Has data issue: false hasContentIssue false

A simple treatment of truth functions

Published online by Cambridge University Press:  12 March 2014

Alan Ross Anderson
Affiliation:
Yale University
Nuel D. Belnap Jr.
Affiliation:
Yale University

Extract

In this note we present an axiomatization of the classical two-valued propositional calculus, for which proofs of decidability, consistency, completeness, and independence, are almost trivial (given an understanding of truth tables).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ackermann, Wilhelm, Begründung einer strengen Implikation, this Journal, vol. 21 (1956), pp. 113128.Google Scholar
[2]Anderson, Alan Ross and Belnap, Nuel D. Jr., A modification of Ackermann's ‘rigorous implication’, (abstract), this Journal, vol. 23 (1958), pp. 457458.Google Scholar
[3]Church, Alonzo, Introduction to mathematical logic, vol. 1, Princeton, 1956.Google Scholar
[4]Curry, Haskell B., The permutability of rules in the classical inferential calculus, this Journal, vol. 17 (1952), pp. 245248.Google Scholar
[5]Curry, Haskell B. and Feys, Robert, Combinatory logic, Amsterdam, 1958.Google Scholar
[6]Parry, W. T., Ein Axiomensystem fur eine neue Art von Implikation (analytische Implikation), Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 56.Google Scholar