Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:02:58.887Z Has data issue: false hasContentIssue false

The PCF conjecture and large cardinals

Published online by Cambridge University Press:  12 March 2014

Luís Pereira*
Affiliation:
Equipe de Logique Mathématique, UFR de Mathématiques (Case 7012), Université Denis-Diderot Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France, E-mail: pereira@logique.jussieu.fr

Abstract

We prove that a combinatorial consequence of the negation of the PCF conjecture for intervais, involving free subsets relative to set mappings, is not implied by even the strongest known large cardinal axiom.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brooke-Taylor, A. and Friedman, S. D., Large cardinals and gap-1 morasses, submitted.Google Scholar
[2]Burke, M. R. and Magidor, M., Shelah's PCF theory and its applications, Annals of Pure and Applied Logic, vol. 50 (1990), pp. 207254.CrossRefGoogle Scholar
[3]Cummings, J., Foreman, M., and Magidor, M., Canonical structure in the universe of set theory I, Annals of Pure and Applied Logic, vol. 129 (2004), no. 1-3, pp. 211243.CrossRefGoogle Scholar
[4]Cummings, J., Foreman, M., and Magidor, M., Canonical structure in the universe of set theory II, Annals of Pure and Applied Logic, vol. 142 (2006), no. 1-3, pp. 5575.CrossRefGoogle Scholar
[5]Donder, H. D., Jensen, R. B., and Stanley, L. J., Condensation-coherent global square systems, Proceedings of the Symposium in Pure Mathematics (Nerode, A. and Shore, R. A., editors), Recursion Theory, vol. 42, American Mathematical Society, Providence, 1985, pp. 237258.Google Scholar
[6]Erdős, P., Hajnal, A., Máté, A., and Rado, R., Combinatorial set theory: Partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, vol. 76, North-Holland, Amsterdam, 1984.Google Scholar
[7]Foreman, M. and Magidor, M., Large cardinals and definable counterexamples to the continuum hypothesis, Annals of Pure and Applied Logic, vol. 76 (1995), pp. 4797.CrossRefGoogle Scholar
[8]Galvin, F., Jech, T., and Magidor, M., An ideal game, this Journal, vol. 43 (1978), pp. 284292.Google Scholar
[9]Gitik, M., On a question of Pereira, to be submitted.Google Scholar
[10]Gitik, M. and Magidor, M., The singular cardinals problem revisited, Set Theory of the Continuum (Judah, H., Just, W., and Woodin, H., editors), Springer-Verlag, Berlin, 1992, pp. 243279.CrossRefGoogle Scholar
[11]Gitik, M. and Magidor, M., Extender based forcings, this Journal, vol. 59 (1994), pp. 445460.Google Scholar
[12]Hamkins, J. D., Fragile measurability, this Journal, vol. 59 (1994), pp. 262282.Google Scholar
[13]Holz, M., Steffens, K., and Weitz, E., Introduction to cardinal arithmetic, Advanced Texts, Birkháuser-Verlag, Basel, 1999.CrossRefGoogle Scholar
[14]Jech, T., On the cofinality of countable products of cardinal numbers, (Baker, A., Bollobás, B., and Hajnal, A., editors), Cambridge University Press, 1990, A tribute to Paul Erdös, pp. 289305.Google Scholar
[15]Jech, T., Set theory, the third millenium edition ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.Google Scholar
[16]Kanamori, A., The higher infinite. Large cardinals in set theory from their beginnings. Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1997.Google Scholar
[17]Koepke, P., The consistency strength of the free-subset property for ℵω, this Journal, vol. 49 (1984), pp. 11981204.Google Scholar
[18]Koszmider, P., Semimorasses and nonreflection at singular cardinals, Annals of Pure and Applied Logic, vol. 72 (1995), pp. 123.CrossRefGoogle Scholar
[19]Kunen, K., Elementary embeddings and infinitary combinatorics, this Journal, vol. 36 (1971), pp. 407413.Google Scholar
[20]Laver, R., Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel Journal of Mathematics, vol. 29 (1978), pp. 385388.CrossRefGoogle Scholar
[21]Magidor, M., On the singular cardinals problem I, Israel Journal of Mathematics, vol. 28 (1977), pp. 131.CrossRefGoogle Scholar
[22]Menas, T., Consistency results concerning supercompactness. Transactions of the American Mathematical Society, vol. 223 (1976), pp. 6191.CrossRefGoogle Scholar
[23]Mildenberger, H., More canonical forms and dense free subsets. Annals of Pure and Applied Logic, vol. 125 (2004), pp. 7599.CrossRefGoogle Scholar
[24]Pereira, L., Combinatoire des cardinaux singuliers et structures PCF, Ph.D. thesis, University of Paris VII, Paris, 09 2007.Google Scholar
[25]Ruyle, J., Cardinal sequences of PCF structures, Ph.D. thesis, University of California, Riverside, 09 1998.Google Scholar
[26]Shelah, S., Independence of strong partition relation for small cardinals and the free-subset problem, this Journal, vol. 45 (1980), pp. 505509.Google Scholar
[27]Shelah, S., ω, may have a strong partition relation, Israel Journal of Mathematics, vol. 38 (1981), pp. 283288.CrossRefGoogle Scholar
[28]Shelah, S., The singular cardinals problem; independence results, Surveys in Set Theory (Mathias, A. R. D., editor), London Mathematical Society Lecture Note Series, vol. 87, Cambridge University Press, Cambridge, 1983, pp. 116134.CrossRefGoogle Scholar
[29]Shelah, S., Cardinal arithmetic, Oxford Logic Guides 29, Clarendon Press, Oxford, 1994.CrossRefGoogle Scholar
[30]Shelah, S., Large normal ideals concentrating on a fixed small cardinality, Archive for Mathematical Logic, vol. 35 (1996), pp. 341347.CrossRefGoogle Scholar
[31]Shelah, S., PCF and infinite free subsets in an algebra, Archive for Mathematical Logic, vol. 41 (2002), pp. 321359.CrossRefGoogle Scholar