Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T09:12:07.409Z Has data issue: false hasContentIssue false

ONE DIMENSIONAL GROUPS DEFINABLE IN THE p-ADIC NUMBERS

Published online by Cambridge University Press:  15 February 2021

JUAN PABLO ACOSTA LÓPEZ*
Affiliation:
DEPARTMENT OF MATHEMATICS OF THE UNIVERSITY OF MÜNSTER SCHOSSPLATZ 2, 48149MÜNSTER, GERMANYE-mail: acostaj@uni-muenster.de

Abstract

A complete list of one dimensional groups definable in the p-adic numbers is given, up to a finite index subgroup and a quotient by a finite subgroup.

Type
Article
Copyright
© The Association for Symbolic Logic 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, J. P., One dimensional groups definable in the p-adic numbers , Ph.D. thesis, Universidad de los Andes, Bogotá, Colombia, 2019.Google Scholar
Cluckers, R., Pressburger sets and p-minimal fields, this Journal, vol. 68 (2003), pp. 153162.Google Scholar
Cluckers, R., Analytic p-adic cell decomposition and integrals . Transactions of the American Mathematical Society , vol. 356 (2004), pp. 14891499.10.1090/S0002-9947-03-03458-5CrossRefGoogle Scholar
Denef, J., p-adic semi-algebraic sets and cell decomposition . Journal für die Reine und Angewandte Mathematik , vol. 369 (1986), pp. 154166.Google Scholar
Fremlin, D. H., Measure Theory , vol. 4, Torres Framlin, Colchester, UK, 2013.Google Scholar
Madden, J. J. and Stanton, C. M., One-dimensional nash groups . Pacific Journal of Mathematics , vol. 154 (1992), pp. 331344.10.2140/pjm.1992.154.331CrossRefGoogle Scholar
Montenegro, S., Onshuus, A., and Simon, P., Stabilizers, groups with f-generics in ${{{NTP}}}_2$ and PRC fields. Journal of the Institute of Mathematics of Jussieu , vol. 19 (2020), no. 3, pp. 821852.CrossRefGoogle Scholar
Pillay, A., Type-definability, compact Lie groups and o-minimality . Journal of Mathematical Logic , vol. 4 (2004), pp. 147162.10.1142/S0219061304000346CrossRefGoogle Scholar
Pillay, A. and Onshuus, A., Definable groups and compact p-adic Lie groups . Journal of the London Mathemaical Society , vol. 78 (2008), no. 1, pp. 233247.Google Scholar
Pillay, A. and Yao, N., A note on groups definable in the p-adic field. Archive for Mathematical Logic , vol. 58 (2019), no. 4, pp. 10291034.10.1007/s00153-019-00673-yCrossRefGoogle Scholar
Schneider, P., p-Adic Lie Groups , Springer Science & Business Media, Berlin, Germany, 2011.10.1007/978-3-642-21147-8CrossRefGoogle Scholar
Silverman, J. H., The Arithmetic of Elliptic Curves , Springer, New York, 1986.10.1007/978-1-4757-1920-8CrossRefGoogle Scholar
Silverman, J. H., Advanced Topics in the Arithmetic of Elliptic Curves , Springer, New York, 1994.10.1007/978-1-4612-0851-8CrossRefGoogle Scholar
van den Dries, L., Dimension of definable sets, algebraic boundedness and henselian fields . Annals of Pure and Applied Logic , vol. 45 (1989), pp. 189209.10.1016/0168-0072(89)90061-4CrossRefGoogle Scholar