Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:08:51.505Z Has data issue: false hasContentIssue false

On the equational theory of projection lattices of finite von neumann factors

Published online by Cambridge University Press:  12 March 2014

Christian Herrmann*
Affiliation:
Technische Universität Darmstadt, Fb Mathematik, Schlossgartenstr. 7, D 64289 Darmstadt, Germany. E-mail: herrmann@mathematik.tu-darmstadt.de

Abstract

For a finite von Neumann algebra factor M, the projections form a modular ortholattice L(M). We show that the equational theory of L(M) coincides with that of some resp. all L(ℂn×n ) and is decidable. In contrast, the uniform word problem for the variety generated by all L(ℂn×n) is shown to be undecidable.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bennett, M. K., Biatomic lattices, Algebra Universalis, vol. 24 (1987), pp. 6073.CrossRefGoogle Scholar
[2]Berberian, Sterling K., The regular ring of a finite A W* -algebra, Annals of Mathematics, vol. 65 (1957), pp. 224240.CrossRefGoogle Scholar
[3]Berberian, Sterling K., The maximal ring of quotients of a finite von Neumann algebra. Rocky Mountain Journal of Mathematics, vol. 12 (1982), pp. 149164.CrossRefGoogle Scholar
[4]Birkhoff, Garret, Lattice theory, American Mathematical Society, Providence, 1967.Google Scholar
[5]Birkhoff, Garret and von Neumann, John, The logic of quantum mechanics. Annals of Mathematics, vol. 37 (1936), pp. 823843.CrossRefGoogle Scholar
[6]Burris, Stanley and Sankappanavar, H. P., A course in universal algebra, Springer, Berlin, 1981.CrossRefGoogle Scholar
[7]Dunn, J. Michael, Hagge, Tobias J., Moss, Lawrence S., and Wang, Zhenghan, Quantum logic as motivated by quantum computing, this Journal, vol. 70 (2005), pp. 353359.Google Scholar
[8]Giudici, Luca, Dintorni del teorema di coordinatizatione di von Neumann, Ph.D. thesis. Universita di Milano, 1995.Google Scholar
[9]Goodearl, Kenneth R., Von Neumann regular rings, Krieger, Malabar, 1991.Google Scholar
[10]Gross, Herbert, Quadratic forms in infinite-dimensional vector spaces, Birkäuser, Basel, 1979.Google Scholar
[11]Gurevich, Yuri, The word problem for certain classes of semigroups, Algebra and Logic, vol. 5 (1966), pp. 2535.Google Scholar
[12]Gurevich, Yuri and Lewis, Harry R., The word problem for cancellation semigroups with zero. this Journal, vol. 49 (1984), pp. 184191.Google Scholar
[13]Hagge, Tobias J., QL(ℂn) determines n, this Journal, vol. 72 (2007), pp. 11941196.Google Scholar
[14]Herrmann, Christian, Complemented modular lattices with involution and orthogonal geometry. Algebra Universalis, vol. 61 (2009), p. 26.CrossRefGoogle Scholar
[15]Herrmann, Christian, Generators for complemented modular lattices and the von Neumann-Jonsson coordinatization theorems, to appear in Algebra Universalis, 2009.Google Scholar
[16]Herrmann, Christian, Micol, Florence, and Roddy, Michael S., On n-distributive modular ortholattices, Algebra Universalis, vol. 53 (2005), pp. 143147.CrossRefGoogle Scholar
[17]Holland, Samuel S., Current interest in orthomodular lattices, Trends in lattice theory (Abbott, J. C., editor), van Nostrand Reinhold, Cincinatti, 1970, pp. 41116.Google Scholar
[18]Huhn, András P., Schwach distributive Verbände I, Acta Scientiarum Mathematicarum, vol. 33 (1972), pp. 297305.Google Scholar
[19]Hutchinson, George, Recursively unsolvable word problems of modular lattices and diagram chasing, Journal of Algebra, vol. 26 (1973), pp. 385399.CrossRefGoogle Scholar
[20]Kaplansky, Irving, Von Neumann's characterization of factors of type II1, Collected works of John von Neumann, vol. III, Pergamon Press, Oxford, 1963, pp. 562563.Google Scholar
[21]Lipshttz, Leonid L., The undecidablility of the wordproblems for projective geometries and modular lattices, Transactions of the American Mathematical Society, vol. 193 (1974), pp. 171180.CrossRefGoogle Scholar
[22]Maeda, Fumitomo, Kontinuierliche Geometrien, Springer, Berlin, 1958.CrossRefGoogle Scholar
[23]Murray, Francis J. and von Neumann, John, On rings of operators, Annals of Mathematics, vol. 37 (1936), pp. 116229.CrossRefGoogle Scholar
[24]Murray, Francis J. and von Neumann, John, On rings of operators IV, Annals of Mathematics, vol. 44 (1943), pp. 761808.CrossRefGoogle Scholar
[25]Rédei, Miklós, Quantum logic in algebraic approach, Kluwer, Dordrecht, 1998.CrossRefGoogle Scholar
[26]Roddy, Michael S., On the word problem for orthocomplemented modular lattices, Canadian Journal of Mathematics, vol. 61 (1989), pp. 9611004.CrossRefGoogle Scholar
[27]Tarski, Alfred, A decision method for elementary algebra and geometry, RAND Corporation, Santa Monica, 1948.Google Scholar
[28]von Neumann, John, Continuous geometry, Princeton University Press, Princeton, 1960.Google Scholar
[29]von Neumann, John, Continuous geometries with a transition probability, American Mathematical Society, Providence, 1981.CrossRefGoogle Scholar