Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T11:59:02.899Z Has data issue: false hasContentIssue false

MORE ON FRÉCHET–URYSOHN IDEALS

Published online by Cambridge University Press:  10 June 2021

SALVADOR GARCÍA FERREIRA
Affiliation:
CENTRO DE CIENCIAS MATEMÁTICAS UNAM ANTIGUA CARRETERA A PÁTZCUARO # 8701 COL. EX HACIENDA SAN JOSÉ DE LA HUERTA MORELIA MICHOACÁN, CP58089, MEXICOE-mail: sgarcia@matmor.unam.mxE-mail: oguzman@matmor.unam.mx
OSVALDO GUZMÁN
Affiliation:
CENTRO DE CIENCIAS MATEMÁTICAS UNAM ANTIGUA CARRETERA A PÁTZCUARO # 8701 COL. EX HACIENDA SAN JOSÉ DE LA HUERTA MORELIA MICHOACÁN, CP58089, MEXICOE-mail: sgarcia@matmor.unam.mxE-mail: oguzman@matmor.unam.mx

Abstract

We study the Rudin–Keisler pre-order on Fréchet–Urysohn ideals on $\omega $ . We solve three open questions posed by S. García-Ferreira and J. E. Rivera-Gómez in the articles [5] and [6] by establishing the following results:

  • For every AD family $\mathcal {A},$ there is an AD family $\mathcal {B}$ such that $\mathcal {A}^{\perp } <_{{\textsf {RK}}}\mathcal {B}^{\perp }.$

  • If $\mathcal {A}$ is a nowhere MAD family of size $\mathfrak {c}$ then there is a nowhere MAD family $\mathcal {B}$ such that $\mathcal {I}\left (\mathcal {A}\right ) $ and $\mathcal {I}\left ( \mathcal {B}\right ) $ are Rudin–Keisler incomparable.

  • There is a family $\left \{ \mathcal {B}_{\alpha }\mid \alpha \in \mathfrak {c}\right \} $ of nowhere MAD families such that if $\alpha \neq \beta $ , then $\mathcal {I}\left ( \mathcal {B}_{\alpha }\right ) $ and $\mathcal {I}\left ( \mathcal {B}_{\beta }\right ) $ are Rudin–Keisler incomparable.

Here $\mathcal {I}(\mathcal {A})$ denotes the ideal generated by an AD family $\mathcal {A}$ .

In the context of hyperspaces with the Vietoris topology, for a Fréchet–Urysohn-filter $\mathcal {F}$ we let $\mathcal {S}_{c}\left ( \mathcal {\xi }\left ( \mathcal {F}\right ) \right ) $ be the hyperspace of nontrivial convergent sequences of the space consisting of $\omega $ as discrete subset and only one accumulation point $\mathcal {F}$ whose neighborhoods are the elements of $\mathcal {F}$ together with the singleton $\{\mathcal {F}\}$ . For a FU-filter $\mathcal {F}$ we show that the following are equivalent:

  • $\mathcal {F}$ is a FUF-filter.

  • $\mathcal {S}_{c}\left ( \mathcal {\xi }\left ( \mathcal {F} \right ) \right ) $ is Baire.

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brendle, J. and Hrušák, M., Countable Fréchet Boolean groups: An independence result , this Journal, vol. 74 (2009), pp. 10611068.Google Scholar
Erdös, P. and Shelah, S., Separability properties of almost-disjoint families of sets . Israel Journal of Mathematics , vol. 12 (1972), pp. 207214.10.1007/BF02764666CrossRefGoogle Scholar
Galvin, F. and Simon, P., A Cech function in ZFC . Topology and its Applications , vol. 163 (2014), pp. 128141.Google Scholar
Garcia-Ferreira, S. and Ortiz-Castillo, Y. F., The hyperspace of convergent sequences . Topology and its Applications , vol. 196 (2015), no. Part B, pp. 795804.10.1016/j.topol.2015.05.022CrossRefGoogle Scholar
Garcia-Ferreira, S. and Rivera-Gómez, J. E., Ordering Fréchet–Urysohn filters . Topology and its Applications , vol. 163 (2014), pp. 128141.10.1016/j.topol.2013.10.012CrossRefGoogle Scholar
Garcia-Ferreira, S. and Rivera-Gómez, J. E., Comparing Fréchet–Urysohn filters with two pre-orders . Topology and its Applications , vol. 225 (2017), pp. 90102.10.1016/j.topol.2017.04.015CrossRefGoogle Scholar
Garcia-Ferreira, S., Rojas-Hernández, R., and Ortiz-Castillo, Y. F., Categorical properties on the hyperspace of nontrivial convergent sequences . Topology and its Applications , vol. 52 (2018), pp. 265279.Google Scholar
Garcia-Ferreira, S., Rojas-Hernández, R., and Ortiz-Castillo, Y. F., The Baire property on the hyperspace of nontrivial convergent sequences, Topology and its Applications , to appear.Google Scholar
Garcia-Ferreira, S. and Uzcátegui, C., Subsequential filters . Topology and its Applications , vol. 156 (2009), pp. 29492959.10.1016/j.topol.2009.02.007CrossRefGoogle Scholar
Gruenhage, G., Infinite games and generalizations of first-countable spaces . Topology and its Applications , vol. 6 (1976), pp. 339352.10.1016/0016-660X(76)90024-6CrossRefGoogle Scholar
Gruenhage, G., The story of a topological game . Rocky Mountain Journal of Mathematics , vol. 36 (2006), pp. 18851914.10.1216/rmjm/1181069351CrossRefGoogle Scholar
Gruenhage, G. and Szeptycki, P. J., Fréchet–Urysohn for finite sets . Topology and its Applications , vol. 151 (2005), pp. 238259.10.1016/j.topol.2003.09.014CrossRefGoogle Scholar
Hewitt, E. and Ross, K. A., Abstract Harmonic Analysis I , Springer, Berlin, 1979.10.1007/978-1-4419-8638-2CrossRefGoogle Scholar
Hrušák, M., Almost disjoint families and topology , Recent Progress in General Topology III (K. P. Hart, J. Van Mill, and P. Simon, editors), Atlantis Press, Paris, 2014, pp. 601638.10.2991/978-94-6239-024-9_14CrossRefGoogle Scholar
Hrušák, M. and Ramos-García, U. A., Malykhin’s problem . Advances in Mathematics , vol. 262 (2014), pp. 193212.10.1016/j.aim.2014.05.009CrossRefGoogle Scholar
Mildenberger, H., Raghavan, D., and Steprans, J., Splitting families and complete separability . Canadian Mathematical Bulletin , vol. 57 (2014), pp. 119124.10.4153/CMB-2013-027-2CrossRefGoogle Scholar
Nyikos, P. J., Subsets of ωω and the Fréchet–Urysohn and ${\alpha}_i$ -properties . Topology and its Applications , vol. 48 (1992), pp. 91116.10.1016/0166-8641(92)90021-QCrossRefGoogle Scholar
Poplawski, M., The Baire property of the hyperspace of nontrivial convergent sequences, preprint, 2018, arXiv:1801.05633v1.Google Scholar
Reznichenko, E. A. and Sipacheva, O. V., Properties of Fréchet–Urysohn type in topological spaces, groups and locally convex spaces . Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika , vol. 3 (1999), pp. 3238.Google Scholar
Shelah, S., MAD saturated families and SANE player . The Canadian Journal of Mathematics , vol. 63 (2011), pp. 119124.10.4153/CJM-2011-057-1CrossRefGoogle Scholar
Todorčević, S., Analytic gaps . Fundamenta Mathematicae , vol. 150 (1996), pp. 5566.10.4064/fm-150-1-55-66CrossRefGoogle Scholar
Todorčević, S. and Uzcátegui, C., Analytic $k$ -spaces . Topology and its Applications , vol. 146/147 (2005), pp. 511526.CrossRefGoogle Scholar