No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
We find the model completion of the theory modules over , where
is a finitely generated commutative algebra over a field K. This is done in a context where the field K and the module are represented by sorts in the theory, so that constructible sets associated with a module can be interpreted in this language. The language is expanded by additional sorts for the Grassmanians of all powers of Kn, which are necessary to achieve quantifier elimination.
The result turns out to be that the model completion is the theory of a certain class of “big” injective modules. In particular, it is shown that the class of injective modules is itself elementary. We also obtain an explicit description of the types in this theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.