Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:03:25.073Z Has data issue: false hasContentIssue false

KRULL DIMENSION IN MODAL LOGIC

Published online by Cambridge University Press:  09 January 2018

GURAM BEZHANISHVILI
Affiliation:
DEPARTMENT OF MATHEMATICAL SCIENCES NEW MEXICO STATE UNIVERSITY LAS CRUCES, NM88003, USAE-mail: guram@math.nmsu.edu
NICK BEZHANISHVILI
Affiliation:
INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM1090GE AMSTERDAM, THE NETHERLANDSE-mail: n.bezhanishvili@uva.nl
JOEL LUCERO-BRYAN
Affiliation:
DEPARTMENT OF APPLIED MATHEMATICS AND SCIENCES KHALIFA UNIVERSITY PO127788ABU DHABI, UAEE-mail: joel.lucero-bryan@kustar.ac.ae
JAN VAN MILL
Affiliation:
KORTEWEG-DE VRIES INSTITUTE FOR MATHEMATICS UNIVERSITY OF AMSTERDAM1098XG AMSTERDAM, THE NETHERLANDSE-mail: j.vanmill@uva.nl

Abstract

We develop the theory of Krull dimension for S4-algebras and Heyting algebras. This leads to the concept of modal Krull dimension for topological spaces. We compare modal Krull dimension to other well-known dimension functions, and show that it can detect differences between topological spaces that Krull dimension is unable to detect. We prove that for a T1-space to have a finite modal Krull dimension can be described by an appropriate generalization of the well-known concept of a nodec space. This, in turn, can be described by modal formulas zemn which generalize the well-known Zeman formula zem. We show that the modal logic S4.Zn := S4 + zemn is the basic modal logic of T1-spaces of modal Krull dimension ≤ n, and we construct a countable dense-in-itself ω-resolvable Tychonoff space Zn of modal Krull dimension n such that S4.Zn is complete with respect to Zn. This yields a version of the McKinsey-Tarski theorem for S4.Zn. We also show that no logic in the interval [S4n+1S4.Zn) is complete with respect to any class of T1-spaces.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

van Benthem, J and Bezhanishvili, G., Modal logics of space, Handbook of Spatial Logics (Aiello, M., Pratt-Hartmann, I., and van Benthem, J., editors), Springer, Dordrecht, 2007, pp. 217298.Google Scholar
van Benthem, J, Bezhanishvili, N., and Hodkinson, I., Sahlqvist correspondence for modal mu-calculus. Studia Logica, vol. 100 (2012), pp. 3160.Google Scholar
Bezhanishvili, G., Esakia, L., and Gabelaia, D., Some results on modal axiomatization and definability for topological spaces. Studia Logica, vol. 81 (2005), pp. 325355.Google Scholar
Bezhanishvili, G., Gabelaia, D., and Jibladze, M., Spectra of compact regular frames. Theory and Applications of Categories, vol. 31 (2016), pp. 365383.Google Scholar
Bezhanishvili, G., Gabelaia, D., and Lucero-Bryan, J., Modal logics of metric spaces. Review of Symbolic Logic, vol. 8 (2015), pp. 178191.Google Scholar
Blackburn, P., de Rijke, M., and Venema, Y., Modal Logic, Cambridge University Press, Cambridge, 2001.Google Scholar
Blok, W., Varieties of interior algebras, Ph.D. thesis, University of Amsterdam, 1976.Google Scholar
Boileau, A. and Joyal, A., La logique des topos, this JOURNAL, vol. 46 (1981), pp. 6–16.Google Scholar
Chae, S. B. and Smith, J. H., Remote points and G-spaces. Topology and its Applications, vol. 11 (1980), pp. 243246.Google Scholar
Chagrov, A. and Zakharyaschev, M., Modal Logic, Oxford University Press, New York, 1997.Google Scholar
Coquand, T. and Lombardi, H., Hidden constructions in abstract algebra: Krull dimension of distributive lattices and commutative rings, Commutative Ring Theory and Applications (Fez, 2001) (Fontana, M., Kabbaj, S.-E., and Wiegand, S., editors), Lecture Notes in Pure and Applied Mathematics, vol. 231, Dekker, New York, 2003, pp. 477499.Google Scholar
Coquand, T., Lombardi, H., and Roy, M.-F., An elementary characterization of Krull dimension, From Sets and Types to Topology and Analysis (Crosilla, L. and Schuster, P., editors), Oxford Logic Guides, vol. 48, Oxford University Press, Oxford, 2005, pp. 239244.Google Scholar
van Douwen, E. K., Remote points. Dissertationes Mathematicae (Rozprawy Matematyczne), vol. 188 (1981), 45 pages.Google Scholar
van Douwen, E. K., Applications of maximal topologies. Topology and its Applications, vol. 51 (1993), pp. 125139.Google Scholar
Dow, A., Remote points in large products. Topology and its Applications, vol. 16 (1983), pp. 1117.Google Scholar
Dow, A. and van Mill, J., On n-to-one continuous images of β. Studia Scientiarum Mathematicarum Hungarica, vol. 44 (2007), pp. 355366.Google Scholar
Eckertson, F. W., Resolvable, not maximally resolvable spaces. Topology and its Applications, vol. 79 (1997), pp. 111.Google Scholar
Eisenbud, D., Commutative Algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995.Google Scholar
Engelking, R., General Topology, second ed., Heldermann Verlag, Berlin, 1989.Google Scholar
Esakia, L., Topological Kripke models. Soviet Mathematics Doklady, vol. 15 (1974), pp. 147151.Google Scholar
Esakia, L., Heyting Algebras I. Duality Theory, “Metsniereba”, Tbilisi, 1985, (In Russian).Google Scholar
Español, L., Constructive Krull dimension of lattices. Revista de la Academia de Ciencias Exactas, Físico-Químicas y Naturales de Zaragoza, Serie 2, vol. 37 (1982), pp. 59.Google Scholar
Español, L., Finite chain calculus in distributive lattices and elementary Krull dimension, Scientific Contributions in Honor of Mirian Andrés Gómez (Lambán, L., Romero, A., and Rubio, J., editors), University of La Rioja, Logroño, 2010, pp. 273285.Google Scholar
Fine, K., An ascending chain of S4 logics. Theoria, vol. 40 (1974), pp. 110116.Google Scholar
Fitting, M. C., Intuitionistic Logic, Model Theory and Forcing, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam-London, 1969.Google Scholar
Gleason, A. M., Projective topological spaces. Illinois Journal of Mathematics, vol. 2 (1958), pp. 482489.Google Scholar
Goldblatt, R. I., Metamathematics of modal logic. Reports on Mathematical Logic, vol. 6 (1976), pp. 4177.Google Scholar
Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2002.Google Scholar
Isbell, J., Graduation and dimension in locales, Aspects of Topology, London Mathematical Society Lecture Note Series, vol. 93, Cambridge University Press, Cambridge, 1985, pp. 195210.Google Scholar
Jankov, V., On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures. Doklady Akademii Nauk SSSR, vol. 151 (1963), pp. 12931294 (In Russian).Google Scholar
Jónsson, B. and Tarski, A., Boolean algebras with operators. I. American Journal of Mathematics, vol. 73 (1951), pp. 891939.Google Scholar
Juhász, I., Cardinal Functions in Topology, Mathematical Centre Tracts, vol. 34, Mathematisch Centrum, Amsterdam, 1971.Google Scholar
Juhász, I., Cardinal Functions in Topology—Ten Years Later, second ed., Mathematical Centre Tracts, vol. 123, Mathematisch Centrum, Amsterdam, 1980.Google Scholar
Kripke, S. A., Semantical analysis of modal logic. I. Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 9 (1963), pp. 6796.Google Scholar
Maksimova, L., Modal logics of finite layers. Algebra and Logic, vol. 14 (1975), pp. 188197.Google Scholar
McKinsey, J. C. C., A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology, this Journal, vol. 6 (1941), pp. 117–134.Google Scholar
McKinsey, J. C. C. and Tarski, A., The algebra of topology. Annals of Mathematics, vol. 45 (1944), pp. 141191.Google Scholar
McKinsey, J. C. C. and Tarski, A., On closed elements in closure algebras. Annals of Mathematics, vol. 47 (1946), pp. 122162.Google Scholar
van Mill, J and Mills, C. F., A boojum and other snarks. Indagationes Mathematicae, vol. 42 (1980), pp. 419424.Google Scholar
Negrepontis, S., Absolute Baire sets. Proceedings of the American Mathematical Society, vol. 18 (1967), pp. 691694.Google Scholar
Porter, J. R. and Woods, R. G., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York, 1988.Google Scholar
Rasiowa, H. and Sikorski, R., The Mathematics of Metamathematics, Monografie Matematyczne, Tom 41, Państwowe Wydawnictwo Naukowe, Warsaw, 1963.Google Scholar
Segerberg, K., An Essay in Classical Modal Logic, Filosofiska Studier, No. 13, Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet, Uppsala, 1971.Google Scholar
Stone, M., Topological representation of distributive lattices and Brouwerian logics. Časopis Pro Pěstování Matematiky a Fysiky, vol. 67 (1937), pp. 125.Google Scholar
Tsao-Chen, T., Algebraic postulates and a geometric interpretation for the Lewis calculus of strict implication. Bulletin of the American Mathematical Society, vol. 44 (1938), pp. 737744.Google Scholar
Walker, R. C., The Stone-Čech Compactification, Springer-Verlag, New York-Berlin, 1974.Google Scholar
Willard, S., General Topology, Dover Publications, Inc., Mineola, NY, 2004.Google Scholar