Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T02:25:25.918Z Has data issue: false hasContentIssue false

Generalizations of the one-dimensional version of the Kruskal-Friedman theorems

Published online by Cambridge University Press:  12 March 2014

L. Gordeev*
Affiliation:
Mathematisches Institut, Universität Tübingen, D-7400 Tübingen 1, West Germany

Extract

The paper [Schütte + Simpson] deals with the following one-dimensional case of Friedman's extension (see in [Simpson 1]) of Kruskal's theorem ([Kruskal]). Given a natural number n, let Sn+1 be the set of all finite sequences of natural numbers <n + 1. If s1 = (a0,…,ak) Sn+1 and s2 = (b0,…,bm) Sn + 1, then a strictly monotone function f: {0,…, k} → {0,…, m} is called an embedding of s1 into s2 if the following two assertions are satisfied:

1) ai, = bf(i), for all i < k;

2) if f(i) < j < f(i + 1) then bj > bf(i+1), for all i < k, j < m.

Then for every infinite sequence s1, s2,…,sk,… of elements of Sn + 1 there exist indices i < j and an embedding of si into Sj. That is, Sn+1 forms a well-quasi-ordering (wqo) with respect to embeddability. For each n, this statement W(Sn+1) is provable in the standard second order conservative extension of Peano arithmetic. On the other hand, the proof-theoretic strength of the statements W(Sn+1) grows so fast that this formal theory cannot prove the limit statement ∀nW(Sn+1). The appropriate first order -versions of these combinatory statements preserve their proof-theoretic strength, so that actually one can speak in terms of provability in Peano arithmetic. These are the main conclusions from [Schütte + Simpson].

We wish to extend this into the transfinite. That is, we take an arbitrary countable ordinal τ > 0 instead of n + 1 and try to obtain an analogous “strong” combinatory statement about finite sequences of ordinals < τ.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[De Jongh and Parikh]De Jongh, D. and Parikh, R., Well-partial-orderings and hierarchies, Indagationes Mathematicae, vol. 39 (1977), pp. 195207.CrossRefGoogle Scholar
[Feferman 1]Feferman, S., Systems of predicative analysis. I, this Journal, vol. 29 (1964), pp. 130.Google Scholar
[Feferman 2]Feferman, S., Systems of predicative analysis. II, this Journal, vol. 33 (1968), pp. 193220.Google Scholar
[Feferman 3]Feferman, S., Proof theory: a personal report, Appendix to G. Takeuti, Proof theory, 2nd ed., North-Holland, Amsterdam, 1987, pp. 447485.Google Scholar
[Friedman]Friedman, H., Iterated inductive definitions and -AC, Intuitionism and proof theory (proceedings, Buffalo, New York, 1968), North-Holland, Amsterdam, 1970, pp. 435442.CrossRefGoogle Scholar
[Friedman + McAloon + Simpson]Friedman, H., McAloon, K., and Simpson, S. G., A finite combinatorial principle which is equivalent to the 1-consistency of predicative analysis, Patras logic symposion, North-Holland, Amsterdam, 1982, pp. 197230.CrossRefGoogle Scholar
[Gordeev]Gordeev, L., Proof-theoretic analysis: weak systems of functions and classes, Annals of Pure and Applied Logic, vol. 38 (1988), pp. 1121.CrossRefGoogle Scholar
[Higman]Higman, G., Ordering by divisibility in abstract algebras, Proceedings of the London Mathematical Society, ser. 3, vol. 2 (1952), pp. 326336.CrossRefGoogle Scholar
[Jäger]Jäger, G., The strength of admissibility without foundation, this Journal, vol. 49 (1984), pp. 867879.Google Scholar
[Kruskal]Kruskal, J., Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture, Transactions of the American Mathematical Society, vol. 95 (1960), pp. 210225.Google Scholar
[Mints]Mints, G., Finite investigations of transfinite derivations, Journal of Soviet Mathematics, vol. 10 (1978), no. 4, pp. 548596.CrossRefGoogle Scholar
[Schütte]Schütte, K., Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik, Archiv für Mathematische Logik und Grundlagenforschung, vol. 7 (1964), pp. 4560.CrossRefGoogle Scholar
[Schütte + Simpson]Schütte, K. and Simpson, S. G., Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen, Archiv für Mathematische Logik und Grundlagenforschung, vol. 25 (1985), pp. 7589.CrossRefGoogle Scholar
[Schwichtenberg]SchwiChtenberg, H., Proof theory: some aspects of cut-elimination, Handbook of mathematical logic, North-Holland, Amsterdam, 1977, pp. 867895.CrossRefGoogle Scholar
[Simpson 1]Simpson, S. G., Nonprovability of certain combinatorial properties of finite fields, Harvey Friedman's research on the foundations of mathematics, North-Holland, Amsterdam, 1985, pp. 87117.CrossRefGoogle Scholar
[Simpson 2]Simpson, S. G., Subsystems of Z2 and reverse mathematics, Appendix to G. Takeuti, Proof theory, 2nd ed., North-Holland, Amsterdam, 1987, pp. 432445.Google Scholar