Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T21:54:15.948Z Has data issue: false hasContentIssue false

Effectiveness and multivalued logics

Published online by Cambridge University Press:  12 March 2014

Giangiacomo Gerla*
Affiliation:
Department of Mathematics and Computer Science, University of Salerno, Via Ponte Don Melillo 84084, Fisciano (Sa), Italy. E-mail: gerla@unisa.it

Abstract

Effective domain theory is applied to fuzzy logic. The aim is to give suitable notions of semi-decidable and decidable L-subset and to investigate about the effectiveness of the fuzzy deduction apparatus.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Biacino, L. and Gerla, G., Decidability, recursive enumerability and Kleene hierarchy for L-subsets, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 35 (1989), pp. 4962.CrossRefGoogle Scholar
[2]Biacino, L. and Gerla, G., Fuzzy logic, continuity and effectiveness, Archive for Mathematical Logic, vol. 41 (2002), pp. 643667.CrossRefGoogle Scholar
[3]Di Nola, A. and Gerla, G., Fuzzy models of first order languages, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 32 (1986), pp. 331340.CrossRefGoogle Scholar
[4]Dubois, D. and Prade, H., Possibility theory: An approach to computerized processing of uncertainty. Plenum Press, New York, 1988.Google Scholar
[5]Gerla, G., Decidability, partial decidability and sharpness relation for L-subsets, Studia Logica, vol. 46 (1987), pp. 227238.CrossRefGoogle Scholar
[6]Gerla, G., Inferences in probability logic, Artificial Intelligence, vol. 70 (1994), pp. 3352.CrossRefGoogle Scholar
[7]Gerla, G., Probability-like functionals and fuzzy logic, Journal of Mathematical Analysis and Application, vol. 216 (1997), pp. 438465.CrossRefGoogle Scholar
[8]Gerla, G., Fuzzy logic: Mathematical tools for approximate reasoning, Kluwer Academic Publishers, Dordrecht, 2001.CrossRefGoogle Scholar
[9]Goguen, J. A., The logic of inexact concepts, Synthese, vol. 19 (1968/1969), pp. 325373.CrossRefGoogle Scholar
[10]Gottwald, S.. A treatise on many-valued logics. Research Studies Press, Baldock, 2000.Google Scholar
[11]Hájek, P., Metamathematics of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1998.CrossRefGoogle Scholar
[12]Montagna, F., Three complexity problems in quantified fuzzy logic, Studia Logica, vol. 68 (2001), pp. 143152.CrossRefGoogle Scholar
[13]Mundici, D., Cignoli, R., and D'Ottaviano, I., Algebraic foundations of many-valued reasoning, Kluwer Academic Publishers, Dordrecht, 2000.Google Scholar
[14]Novák, V., Perfilieva, I., and Mockor, J., Mathematical principles of fuzzy logic, Kluwer Academic Publishers, Dordrecht, 1999.CrossRefGoogle Scholar
[15]Pavelka, J., On fuzzy logic I: Many-valued rules of inference, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 25 (1979), pp. 4552.CrossRefGoogle Scholar
[16]Scarpellini, B., Die Nichaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Łukasiewicz, this Journal, vol. 27 (1962), pp. 159170.Google Scholar
[17]Shafer, G., A mathematical theory of evidence, Princeton University Press, Princeton, 1976.CrossRefGoogle Scholar
[18]Smyth, M., Effectively given domains, Theoretical Computer Science, vol. 5 (1977), pp. 257274.CrossRefGoogle Scholar
[19]Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning I, II, III, Information Sciences, vol. 8, 9 (1975), pp. 199–275, 301357, 43–80.CrossRefGoogle Scholar