Hostname: page-component-cb9f654ff-9knnw Total loading time: 0 Render date: 2025-08-14T12:49:40.006Z Has data issue: false hasContentIssue false

THE COMPACTNESS OF GÖDEL LOGIC

Published online by Cambridge University Press:  20 December 2024

J. P. AGUILERA*
Affiliation:
KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC INSTITUTE OF MATHEMATICS, UNIVERSITY OF VIENNA KOLINGASSE 14-16, 1090 VIENNA AUSTRIA INSTITUTE OF DISCRETE MATHEMATICS AND GEOMETRY VIENNA UNIVERSITY OF TECHNOLOGY WIEDNER HAUPTSTRASSE 8–10, 1040 VIENNA AUSTRIA DEPARTMENT OF MATHEMATICS WE16 GHENT UNIVERSITY KRIJGSLAAN 281-S8, B9000 GHENT BELGIUM

Abstract

If G is any infinite-valued Gödel logic with identity, then the compactness cardinal of G is the least $\omega _1$-strongly compact cardinal.

Information

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Aguilera, J. P., The Löwenheim-Skolem theorem for Gödel logic . Annals of Pure and Applied Logic, vol. 174 (2023), Article number 103235.Google Scholar
Baaz, M. and Preining, N., On the classification of first order Gödel logics . Annals of Pure and Applied Logic, vol. 170 (2019), pp. 3657.Google Scholar
Baaz, M., Preining, N., and Zach, R., First-order Gödel logics . Annals of Pure and Applied Logic, vol. 147 (2007), pp. 2347.Google Scholar
Baaz, M. and Zach, R., Compact propositional Gödel logics , Proceedings of 28th International Symposium on Multiple Valued Logic, IEEE Computer Society Press, Los Alamitos, 1998.Google Scholar
Bagaria, J. and Magidor, M., Group radicals and strongly compact cardinals . Transactions of the American Mathematical Society, vol. 366 (2014), pp. 18571877.Google Scholar
Bagaria, J. and Magidor, M., On ${\omega}_1$ -strongly compact cardinals . Topology and its Applications, vol. 79 (2014), pp. 266278.Google Scholar
Baldwin, J. and Shelah, S., A Hanf number for saturation and omission . Fundamenta Mathematicae, vol. 213 (2011), pp. 255270.Google Scholar
Cintula, P., Two notions of compactness in Gödel logics . Studia Logica, vol. 81 (2005), pp. 99123.Google Scholar
Dummett, M., A propositional logic with denumerable matrix . The Journal of Symbolic Logic, vol. 24 (1959), 96107.Google Scholar
Gitman, V. and Osinski, J., Upward Löwenheim-Skolem-Tarski numbers for abstract logics, Forthcoming.Google Scholar
Gödel, K., Zum intuitionistischen Aussagenkalkül , Ergebnisse eines mathematischen Kolloquiums, 1933, pp. 3438.Google Scholar
Hájek, P., Metamathematics of Fuzzy Logic, Springer, 1998.Google Scholar
Jech, T. J., Set Theory, Springer Monographs in Mathematics, Springer, 2003.Google Scholar
Keisler, H. J., Logic with the quantifier “there exist uncountably many” . Annals of Mathematical Logic, vol. 1 (1970), pp. 193.Google Scholar
Magidor, M., How large is the first strongly compact cardinal? Or a study on identity crises . Annals of Mathematical Logic, vol. 10 (1976), pp. 3357.Google Scholar
Pourmahdian, M. and Tavana, N. R., Compactness in first-order Gödel logics . Journal of Logic and Computation, vol. 23 (2012), pp. 473485.Google Scholar
Shelah, S., Classification Theory and the Number of Nonisomorphic Models, North-Holland, Amsterdam, 1978.Google Scholar
Smoryński, C., Lectures on nonstandard models of arithmetic , Logic Colloquium 82 (Lollu, G., Longo, G., and Marcja, A., editors), 1984, pp. 170.Google Scholar