Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T00:02:02.159Z Has data issue: false hasContentIssue false

CHARACTERIZING EXISTENCE OF A MEASURABLE CARDINAL VIA MODAL LOGIC

Published online by Cambridge University Press:  01 February 2021

GURAM BEZHANISHVILI
Affiliation:
DEPARTMENT OF MATHEMATICAL SCIENCES NEW MEXICO STATE UNIVERSITYLAS CRUCES, NM, USA E-mail:guram@nmsu.edu
NICK BEZHANISHVILI
Affiliation:
INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAMAMSTERDAM, THE NETHERLANDS E-mail:N.Bezhanishvili@uva.nl
JOEL LUCERO-BRYAN
Affiliation:
DEPARTMENT OF MATHEMATICS KHALIFA UNIVERSITY OF SCIENCE AND TECHNOLOGYABU DHABI, UNITED ARAB EMIRATES E-mail:joel.bryan@ku.ac.ae
JAN VAN MILL
Affiliation:
KORTEWEG-DE VRIES INSTITUTE FOR MATHEMATICS UNIVERSITY OF AMSTERDAMAMSTERDAM, THE NETHERLANDS E-mail:j.vanMill@uva.nl

Abstract

We prove that the existence of a measurable cardinal is equivalent to the existence of a normal space whose modal logic coincides with the modal logic of the Kripke frame isomorphic to the powerset of a two element set.

Type
Article
Copyright
© The Association for Symbolic Logic 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aczel, P., Non-Well-Founded Sets , CSLI Lecture Notes, vol. 14, Stanford University, Center for the Study of Language and Information, Stanford, CA, 1988.Google Scholar
Baltag, A., STS: A structural theory of sets . Logic Journal of the IGPL , vol. 7 (1999), no. 4, pp. 481515.CrossRefGoogle Scholar
Barwise, J. and Moss, L., Vicious Circles , CSLI Lecture Notes, vol. 60, CSLI Publications, Stanford, CA, 1996.Google Scholar
van Benthem, J., Bezhanishvili, G., and Gehrke, M., Euclidean hierarchy in modal logic . Studia Logica , vol. 75 (2003), no. 3, pp. 327344.CrossRefGoogle Scholar
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and van Mill, J., Krull dimension in modal logic , this Journal, vol. 82 (2017), no. 4, pp. 13561386.Google Scholar
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and van Mill, J., Tychonoff HED-spaces and Zemanian extensions of S4.3 . The Review of Symbolic Logic , vol. 11 (2018), no. 1, pp. 115132.CrossRefGoogle Scholar
Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and van Mill, J., On modal logics arising from scattered locally compact Hausdorff spaces . Annals of Pure and Applied Logic , vol. 170 (2019), no. 5, pp. 558577.CrossRefGoogle Scholar
Bezhanishvili, G. and Harding, J., The modal logic of  $\beta(\mathbb N)$ . Archive for Mathematical Logic , vol. 48 (2009), no. 3–4, pp. 231242.CrossRefGoogle Scholar
Chagrov, A. and Zakharyaschev, M., Modal Logic , Oxford University Press, Oxford, 1997.Google Scholar
Comfort, W. W. and Negrepontis, S., The Theory of Ultrafilters , Springer-Verlag, New York, 1974.CrossRefGoogle Scholar
Engelking, R., General Topology , second ed., Heldermann Verlag, Berlin, 1989.Google Scholar
Fine, K., An ascending chain of S4 logics . Theoria , vol. 40 (1974), pp. 110116.CrossRefGoogle Scholar
Hamkins, J. and Löwe, B., The modal logic of forcing . Transactions of the American Mathematical Society , vol. 360 (2008), no. 4, pp. 17931817.CrossRefGoogle Scholar
Jech, T., Set Theory , Academic Press [Harcourt Brace Jovanovich], New York, London, 1978.Google Scholar
Kunen, K., Set Theory. An Introduction to Independence Proofs , Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland, Amsterdam, 1983.Google Scholar