Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T19:00:15.858Z Has data issue: false hasContentIssue false

BIG IN REVERSE MATHEMATICS: MEASURE AND CATEGORY

Published online by Cambridge University Press:  17 October 2023

SAM SANDERS*
Affiliation:
DEPARTMENT OF PHILOSOPHY II RUHR-UNIVERSITÄT BOCHUM BOCHUM, GERMANY
*

Abstract

The smooth development of large parts of mathematics hinges on the idea that some sets are ‘small’ or ‘negligible’ and can therefore be ignored for a given purpose. The perhaps most famous smallness notion, namely ‘measure zero’, originated with Lebesgue, while a second smallness notion, namely ‘meagre’ or ‘first category’, originated with Baire around the same time. The associated Baire category theorem is a central result governing the properties of meagre (and related) sets, while the same holds for Tao’s pigeonhole principle for measure spaces and measure zero sets. In this paper, we study these theorems in Kohlenbach’s higher-order Reverse Mathematics, identifying a considerable number of equivalent and robust theorems. The latter involve most basic properties of semi-continuous and pointwise discontinuous functions, Blumberg’s theorem, Riemann integration, and Volterra’s early work circa 1881. All the aforementioned theorems fall (far) outside of the Big Five of Reverse Mathematics, and we investigate natural restrictions like Baire 1 and quasi-continuity that make these theorems provable again in the Big Five (or similar). Finally, despite the fundamental differences between measure and category, the proofs of our equivalences turn out to be similar.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appell, J., Banaś, J., and Merentes, N., Bounded Variation and Around , De Gruyter Series in Nonlinear Analysis and Applications, vol. 17, De Gruyter, Berlin, 2014.Google Scholar
Ascoli, G.Sul concetto di integrale definito. Atti della Accademia Reale Dei Lincei, Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali , vol. 2 (1875), no. 2, pp. 862872.Google Scholar
Avigad, J. and Feferman, S., Gödel’s functional (“Dialectica”) interpretation , Handbook of Proof Theory , Studies in Logic and the Foundations of Mathematics, vol. 137, Elsevier, Amsterdam, 1998, pp. 337405.Google Scholar
Bagemihl, F., A note on Scheeffer’s theorem . The Michigan Mathematical Journal , vol. 2 (1953/54), pp. 149150 (1955).Google Scholar
Baire, R., Sur les fonctions de variables réelles . Annali di Matematica Pura ed Applicata , vol. 3 (1899), no. 3, pp. 1123.CrossRefGoogle Scholar
Baire, R., Leçons sur les fonctions discontinues , Les Grands Classiques Gauthier-Villars, Jacques Gabay, Sceaux, 1995 (in French), reprint of the 1905 original.Google Scholar
Banach, S., Über die Baire’sche Kategorie gewisser Funktionenmengen , Studia Mathematica , vol. 3 (1931), pp. 174179.Google Scholar
Barrett, J. M., The reverse mathematics of Cousin’s lemma , Ph.D. Thesis, Victoria University of Wellington, 2020, supervised by Rod Downey and Noam Greenberg, xi + 51 pp.Google Scholar
Barrett, J. M., Downey, R. G., and Greenberg, N., Cousin’s lemma in second-order arithmetic, preprint, 2021, arxiv:2105.02975.Google Scholar
Bartle, R. G., A Modern Theory of Integration , Graduate Studies in Mathematics, vol. 32, American Mathematical Society, Providence, 2001.Google Scholar
Bishop, E., Foundations of Constructive Analysis , McGraw-Hill, New York, 1967.Google Scholar
Blumberg, H., New properties of all real functions . Transactions of the AMS - American Mathematical Society , vol. 24 (1922), no. 2, pp. 113128.Google Scholar
Borsík, J., Sums of quasicontinuous functions defined on pseudometrizable spaces . Real Analysis Exchange , vol. 22 (1996/97), no. 1, pp. 328337.CrossRefGoogle Scholar
Borsík, J. and Doboš, J., A note on real cliquish functions . Real Analysis Exchange , vol. 18 (1992/93), no. 1, pp. 139145.Google Scholar
Bourbaki, N., Functions of a Real Variable , Elements of Mathematics, Springer, Berlin–Heidelberg, 2004.Google Scholar
Broughan, K. A., The boundedness principle characterizes second category subsets . Bulletin of the Australian Mathematical Society , vol. 16 (1977), no. 2, pp. 257265.Google Scholar
Brown, A. B., A proof of the Lebesgue condition for Riemann integrability . American Mathematical Monthly , vol. 43 (1936), no. 7, pp. 396398.Google Scholar
Brown, D. K., The Baire category theorem in weak subsystems of second-order arithmetic , Ph.D. thesis, The Pennsylvania State University; ProQuest LLC, Ann Arbor, 1987.Google Scholar
Brown, D. K. and Simpson, S. G., The Baire category theorem in weak subsystems of second-order arithmetic , this Journal, vol. 58 (1993), no. 2, pp. 557578.Google Scholar
Buchholz, W., Feferman, S., Pohlers, W., and Sieg, W., Iterated Inductive Definitions and Subsystems of Analysis , Lecture Notes in Mathematics, vol. 897, Springer, Berlin–Heidelberg, 1981.Google Scholar
Carleson, L., On convergence and growth of partial sums of Fourier series . Acta Mathematica , vol. 116 (1966), pp. 135157.Google Scholar
Cohen, P., The independence of the continuum hypothesis . Proceedings of the National Academy of Sciences of the United States of America , vol. 50 (1963), pp. 11431148.Google Scholar
Cohen, P., The independence of the continuum hypothesis. II . Proceedings of the National Academy of Sciences of the United States of America , vol. 51 (1964), pp. 105110.CrossRefGoogle ScholarPubMed
Darboux, G., Mémoire Sur les fonctions discontinues . Annales scientifiques de l’École Normale Supérieure 2e série , vol. 4 (1875), pp. 57112.Google Scholar
Dini, U., Fondamenti per la Teorica Delle Funzioni di Variabili Reali , Nistri, Pisa, 1878.Google Scholar
Doboš, J. and Šalát, T. Cliquish functions, Riemann integrable functions and quasi-uniform convergence . Acta Mathematica Universitatis Comenianae , vol. 40/41 (1982), pp. 219223.Google Scholar
Dunham, W., A historical gem from Vito Volterra , Mathematics Magazine , vol. 63 (1990), no. 4, pp. 234237.Google Scholar
Dzhafarov, D. D. and Mummert, C., Reverse Mathematics: Problems, Reductions, and Proofs , Springer, Cham, 2022.CrossRefGoogle Scholar
Ellis, H. W., Darboux properties and applications to non-absolutely convergent integrals , Canadian Journal of Mathematics , vol. 3 (1951), pp. 471485.Google Scholar
Ewert, J., Characterization of cliquish functions , Acta Mathematica Hungarica , vol. 89 (2000), no. 4, pp. 269276.CrossRefGoogle Scholar
Friedman, H., Some systems of second order arithmetic and their use , Proceedings of the International Congress of Mathematicians (Vancouver, BC, 1974) , vol. 1 , Canadian Mathematical Congress: Vancouver, 1975, pp. 235242.Google Scholar
Friedman, H., Systems of second order arithmetic with restricted induction, I & II (abstracts) , this Journal, vol. 41 (1976), pp. 557559.Google Scholar
Gauld, D., Did the young Volterra know about cantor? Mathematics Magazine , vol. 66 (1993), no. 4, pp. 246247.CrossRefGoogle Scholar
Gödel, K., The consistency of the axiom of choice and of the generalized continuum-hypothesis . Proceedings of the National Academy of Science , vol. 24 (1938), no. 12, pp. 556557.Google Scholar
Gordon, R. A., The inversion of approximate and dyadic derivatives using an extension of the Henstock integral . Real Analysis Exchange , vol. 16 (1990/91), no. 1, 154168.Google Scholar
Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron, and Henstock , Graduate Studies in Mathematics, vol. 4, American Mathematical Society, Providence, 1994.Google Scholar
Hankel, H., Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen, Ludwig Friedrich Fues, Memoir presented at the University of Tübingen on 6 March 1870.Google Scholar
Hankel, H., Untersuchungen über die unendlich oft oscillirenden und unstetigen Functionen . Mathematische Annalen , vol. 20 1882, pp. 63112.Google Scholar
Herrlich, H., Axiom of Choice , Lecture Notes in Mathematics, vol. 1876, Springer, Berlin–Heidelberg, 2006.Google Scholar
Hilbert, D. and Bernays, P., Grundlagen der Mathematik. II , Grundlehren der mathematischen Wissenschaften, vol. 50, Springer, Berlin–Heidelberg, 1970.Google Scholar
Holá, Ľ., There are ${2}^{\mathrm{c}}$ quasicontinuous non Borel functions on uncountable polish space . Results in Mathematics , vol. 76 (2021), no. 3, Article no. 126, 11 pp.Google Scholar
Holá, Ľ., Holý, D., and Moors, W., USCO and Quasicontinuous Mappings , De Gruyter Studies in Mathematics, vol. 81, De Gruyter, Berlin, 2021.Google Scholar
Hunter, J., Higher-order reverse topology , Ph.D. thesis, The University of Wisconsin–Madison; ProQuest LLC, Ann Arbor, 2008.Google Scholar
Jayne, J. E. and Rogers, C. A., First level Borel functions and isomorphisms . Journal de Mathématiques Pures et Appliquées (9) , vol. 61 (1982), no. 2, pp. 177205.Google Scholar
Kanovei, V. and Katz, M., A positive function with vanishing Lebesgue integral in Zermelo–Fraenkel set theory . Real Analysis Exchange , vol. 42 (2017), no. 2, pp. 385390.Google Scholar
Kempisty, S., Sur les fonctions quasicontinues . Fundamenta Mathematicae , vol. 19 (1932), no. 1, pp. 184197.Google Scholar
Keremedis, K., Disasters in topology without the axiom of choice . Archive for Mathematical Logic , vol. 40 (2001), no. 8, pp. 569580.Google Scholar
Kirchheim, B., Baire one star functions . Real Analysis Exchange , vol. 18 (1992/93), no. 2, pp. 385399.Google Scholar
Kohlenbach, U., Foundational and mathematical uses of higher types , Reflections on the Foundations of Mathematics , Lecture Notes in Logic, vol. 15, Cambridge University Press, Cambridge, 2002, pp. 92116.Google Scholar
Kohlenbach, U., Higher order reverse mathematics , Reverse Mathematics 2001 , Lecture Notes in Logic, vol. 21, Cambridge University Press, Cambridge, 2005, pp. 281295.Google Scholar
Kosiński, L., Martel, É., and Ransford, T., A uniform boundedness principle in pluripotential theory . Arkiv för Matematik , vol. 56 (2018), no. 1, pp. 101109.Google Scholar
Kostyrko, P., Some properties of oscillation . Mathematica Slovaca , vol. 30 (1980), pp. 157162.Google Scholar
Koumoullis, G., A generalization of functions of the first class . Topology and Its Applications , vol. 50 (1993), no. 3, pp. 217239.Google Scholar
Kuratowski, K., Topology , vol. I , Academic Press, New York–London, 1966.Google Scholar
Lebesgue, H., Intégrale, Longueur, Aire . Annali di Mathematica Pura ed Applicata (3) , vol. 7 (1902), pp. 231359.Google Scholar
Lee, P.-Y., On $\mathrm{ACG}^{\ast }$ functions . Real Analysis Exchange , vol. 15 (1989/90), no. 2, pp. 754759.Google Scholar
Lee, P.-Y., Tang, W.-K., and Zhao, D., An equivalent definition of functions of the first Baire class . Proceedings of the American Mathematical Society , vol. 129 (2001), no. 8, pp. 22732275.Google Scholar
Longley, J. and Normann, D., Higher-Order Computability , Theory and Applications of Computability, Springer, Berlin–Heidelberg, 2015.CrossRefGoogle Scholar
Maliszewski, A., On the products of bounded Darboux Baire one functions . Journal of Applied Analysis , vol. 5 (1999), no. 2, pp. 171185.Google Scholar
Menkyna, R., On representations of Baire one functions as the sum of lower and upper semicontinuous functions . Real Analysis Exchange , vol. 38 (2012/13), no. 1, pp. 169175.Google Scholar
Montalbán, A., Open questions in reverse mathematics . Bulletin of the Symbolic Logic , vol. 17 (2011), no. 3, pp. 431454.Google Scholar
Myerson, G. I., First-class functions . American Mathematical Monthly , vol. 98 (1991), no. 3, pp. 237240.Google Scholar
Mytilinaios, M. E. and Slaman, T. A., On a question of Brown and Simpson , Computability, Enumerability, Unsolvability , London Mathematical Society Lecture Note Series, vol. 224, Cambridge University Press, Cambridge, 1996, pp. 205218.Google Scholar
Neeman, I., Necessary use of ${\Sigma}_1^1$ induction in a reversal , this Journal, vol. 76 (2011), no. 2, pp. 561574.Google Scholar
Nemoto, T., A constructive proof of the dense existence of nowhere-differentiable functions in $\mathrm{C}\left[0,1\right]$ . Computability , vol. 9 (2020), nos. 3–4, pp. 315326.Google Scholar
Nemoto, T. and Sato, K., A marriage of Brouwer’s intuitionism and Hilbert’s finitism I: Arithmetic , this Journal, vol. 87 (2022), no. 2, pp. 437497.Google Scholar
Neubrunnová, A., On certain generalizations of the notion of continuity , Matematický Časopis Sloven. Akad. Vied., vol. 23 (1973), pp. 374380.Google Scholar
Neubrunnová, A., On quasicontinuous and cliquish functions . Časopis pro Pěstování Matematiky , vol. 99 (1974), pp. 109114.Google Scholar
Nguyen, B. M. and Nguyen, X. T., On the continuity of vector convex multivalued functions . Acta Mathematica Vietnamica , vol. 27 (2002), no. 1, pp. 1325.Google Scholar
Normann, D. and Sanders, S., On the mathematical and foundational significance of the uncountable . Journal of Mathematical Logic , vol. 19 (2019), no. 1, p. 1950001.Google Scholar
Normann, D. and Sanders, S., Open sets in reverse mathematics and computability theory . Journal of Logic and Computation , vol. 30 (2020), no. 8, pp. 16391679.Google Scholar
Normann, D. and Sanders, S., Pincherle’s theorem in reverse mathematics and computability theory . Annals of Pure and Applied Logic , vol. 171 (2020), no. 5, Article no. 102788, 41 pp.Google Scholar
Normann, D. and Sanders, S., The axiom of choice in computability theory and reverse mathematics . Journal of Logic and Computation , vol. 31 (2021), no. 1, pp. 297325.Google Scholar
Normann, D. and Sanders, S., The Vitali covering theorem in reverse mathematics and computability theory, submitted, 2022. https://arxiv.org/abs/1902.02756 Google Scholar
Normann, D. and Sanders, S., On robust theorems due to Bolzano, Jordan, Weierstrass, and cantor in reverse mathematics , this Journal (2022), pp. 151. https://doi.org/10.1017/jsl.2022.71 Google Scholar
Normann, D. and Sanders, S., On the uncountability of $\mathbb{R}$ , this Journal, vol. 87 (2022), no. 4, pp. 14741521.Google Scholar
Normann, D. and Sanders, S., Betwixt Turing and Kleene , Proceedings of LFCS’22 , Logical Foundations of Computer Science, vol. 13137, Cambridge University Press, Cambridge, 2022, pp. 117.Google Scholar
Normann, D. and Sanders, S., On the computational properties of basic mathematical notions . Journal of Logic and Computation , vol. 32 (2022), no. 8, pp. 17471795.Google Scholar
Normann, D. and Sanders, S., The Biggest Five of reverse mathematics, Journal of Mathematical Logic , to appear, https://doi.org/10.1142/S0219061324500077.CrossRefGoogle Scholar
Novikov, P. S. and Adyan, S. I., On a semicontinuous function . Moskov. Gos. Ped. Inst. Uč. Zap. , vol. 138 (1958), pp. 310 (in Russian).Google Scholar
Osgood, W. F., Non-uniform convergence and the integration of series term by term . American Journal of Mathematics , vol. 19 (1897), no. 2, pp. 155190.Google Scholar
Pawlak, R. J., On some class of functions intermediate between the class  ${\mathrm{B}}_1^{\ast }$ and the family of continuous functions. Tatra Mountains Mathematical Publications , vol. 19 (2000), no. part I, pp. 135144.Google Scholar
Pfeffer, W. F., A note on the generalized Riemann integral . Proceedings of the American Mathematical Society , vol. 103 (1988), no. 4, pp. 11611166.Google Scholar
Riemann, B., Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen , vol. 13, Habilitation thesis defended in 1854, published in 1867, p. 47.Google Scholar
Riemann, B., Bernhard Riemann: Collected Works (Baker, R. C., Christenson, C. O., and Orde, H., translators), Kendrick Press, Heber City, 2004.Google Scholar
Sakamoto, N. and Yamazaki, T., Uniform versions of some axioms of second order arithmetic . Mathematical Logic Quarterly , vol. 50 (2004), no. 6, pp. 587593.Google Scholar
Saks, S., Theory of the Integral , Dover Publications, New York, 1964.Google Scholar
Sanders, S., The uncountability of $\mathbb{R}$ in reverse mathematics , Proceedings of CiE22 , Lecture Notes in Computer Science, vol. 13359, Springer, Berlin–Heidelberg, 2022, pp. 272286.Google Scholar
Sanders, S., On the computational properties of the Baire category theorem, submitted, 2022, arxiv:2210.05251.Google Scholar
Sanders, S., Big in reverse mathematics: The uncountability of the real numbers , this Journal (2023), pp. 134. https://doi.org/10.1017/jsl.2023.42 Google Scholar
Silva, C. E. and Wu, Y., No functions continuous only at points in a countable dense set, preprint, 2023, arxiv:1809.06453v3.Google Scholar
Simpson, S. G., Reverse Mathematics 2001 , Lecture Notes in Logic, vol. 21, Association for Symbolic Logic, La Jolla, 2005.Google Scholar
Simpson, S. G., Subsystems of Second Order Arithmetic , second ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.Google Scholar
Stephen Smith, H. J., On the integration of discontinuous functions . Proceedings of the London Mathematical Society , vol. 6 (1874/75), pp. 140153.Google Scholar
Stillwell, J., Reverse Mathematics, Proofs from the Inside Out , Princeton University Press, Princeton, 2018.Google Scholar
Tao, T., Compactness and compactification , The Princeton Companion to Mathematics (Gowers, T., editor), Princeton University Press, Princeton, 2008, pp. 167169.Google Scholar
Tao, T., An Epsilon of Room, I: Real Analysis , Graduate Studies in Mathematics, vol. 117, American Mathematical Society, Providence, 2010.Google Scholar
Thomae, C. J. T., Einleitung in die Theorie der bestimmten Integrale , Louis Nebert, Halle a.S., 1875.Google Scholar
Troelstra, A. S., Metamathematical Investigation of Intuitionistic Arithmetic and Analysis , Lecture Notes in Mathematics, vol. 344, Springer, Berlin, 1973.Google Scholar
Trohimčuk, J. J., An example of a point-set. Ukrain. Mat. Ž. , vol. 13 (1961), no. 1, pp. 117118 (in Russian).Google Scholar
Volterra, V., Alcune osservasioni sulle funzioni punteggiate discontinue . Giornale di matematiche , vol. XIX (1881), pp. 7686.Google Scholar
Zajíček, L., On $\sigma$ -porous sets in abstract spaces . Abstract and Applied Analysis , vol. 5 (2005), pp. 509534.Google Scholar