Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:14:36.337Z Has data issue: false hasContentIssue false

THE AUTOMORPHISM GROUP OF THE FRAÏSSÉ LIMIT OF FINITE HEYTING ALGEBRAS

Published online by Cambridge University Press:  07 June 2022

KENTARÔ YAMAMOTO*
Affiliation:
INSTITUTE OF COMPUTER SCIENCE OF THE CZECH ACADEMY OF SCIENCES POD VODÁRENSKOU VĚŽÍ 271/2 LIBEŇ, 182 00 PRAGUE, CZECH REPUBLIC

Abstract

Roelcke non-precompactness, simplicity, and non-amenability of the automorphism group of the Fraïssé limit of finite Heyting algebras are proved among others.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. D., The algebraic simplicity of certain groups of homeomorphisms . American Journal of Mathematics , vol. 80 (1958), no. 4, pp. 955963.10.2307/2372842CrossRefGoogle Scholar
Blok, W. A., Varieties of interior algebras , Ph.D. thesis, University of Amsterdam, 1976.Google Scholar
Calderoni, F., Kwiatkowska, A., and Tent, K., Simplicity of the automorphism groups of order and tournament expansions of homogeneous structures . Journal of Algebra , vol. 580 (2021), pp. 4362.10.1016/j.jalgebra.2021.03.028CrossRefGoogle Scholar
Chagrov, A. and Zakharyaschev, M., Modal Logic , Oxford University Press, Oxford, 1997.Google Scholar
Darnière, L., On the model-completion of Heyting algebras, preprint, 2018, arXiv:1810.01704.Google Scholar
Darnière, L. and Junker, M., Codimension and pseudometric on co-Heyting algebras . Algebra Universalis , vol. 64 (2010), nos. 3–4, pp. 251282.10.1007/s00012-011-0103-xCrossRefGoogle Scholar
Droste, M. and Macpherson, D, The automorphism group of the universal distributive lattice . Algebra Universalis , vol. 43 (2000), pp. 295306.10.1007/s000120050160CrossRefGoogle Scholar
Ghilardi, S. and Zawadowski, M., Model completions and r-Heyting categories . Annals of Pure and Applied Logic , vol. 88 (1997), no. 1, pp. 2746.10.1016/S0168-0072(97)00012-2CrossRefGoogle Scholar
Ghilardi, S. and Zawadowski, M., Sheaves, Games, and Model Completions: A Categorial Approach to Nonclassical Propositional Logics , Springer, Dordrecht, 2002.10.1007/978-94-015-9936-8CrossRefGoogle Scholar
Kechris, A. S., Pestov, V. S., and Todorčević, S., Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups . Geometric and Functional Analysis , vol. 15 (2005), pp. 106189.10.1007/s00039-005-0503-1CrossRefGoogle Scholar
Kechris, A. S. and Sokić, M., Dynamical properties of the automorphism groups of the random poset and random distributive lattice . Fundamenta Mathematicae , vol. 218 (2012), no. 1, pp. 6994.10.4064/fm218-1-4CrossRefGoogle Scholar
Macpherson, H. D., A survey of homogeneous structures . Discrete Mathematics , vol. 311 (2011), pp. 15991634.10.1016/j.disc.2011.01.024CrossRefGoogle Scholar
Madarász, J. X., Interpolation and amalgamation; pushing the limits. Part I . Studia Logica: An International Journal for Symbolic Logic , vol. 61 (1998), no. 3, pp. 311345.10.1023/A:1005064504044CrossRefGoogle Scholar
Maksimova, L. L., Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras . Algebra and Logic , vol. 16 (1977), no. 6, pp. 427455.10.1007/BF01670006CrossRefGoogle Scholar
Pitts, A. M., On an interpretation of second order quantification in first order intuitionistic propositional logic, this Journal, vol. 57 (1992), no. 1, pp. 33–52.Google Scholar
Tent, K. and Ziegler, M., On the isometry group of the Urysohn space . Journal of the London Mathematical Society , vol. 87 (2011), no. 1, pp. 289303.10.1112/jlms/jds027CrossRefGoogle Scholar
Truss, J. K., Infinite permutation groups II. Subgroups of small index . Journal of Algebra , vol. 120 (1989), no. 2, pp. 494515.10.1016/0021-8693(89)90212-3CrossRefGoogle Scholar
Tsankov, T., Unitary representations of oligomorphic groups . Geometric and Functional Analysis , vol. 22 (2012), no. 2, pp. 528555.10.1007/s00039-012-0156-9CrossRefGoogle Scholar