Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T23:57:15.893Z Has data issue: false hasContentIssue false

An ideal characterization of Mahlo cardinals

Published online by Cambridge University Press:  12 March 2014

Qi Feng*
Affiliation:
Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

We show that a cardinal κ is a (strongly) Mahlo cardinal if and only if there exists a nontrivial κ-complete κ-normal ideal on κ. Also we show that if κ is Mahlo and λκ and λ<κ = λ then there is a nontrivial κ-complete κ-normal fine ideal on Pκ(λ). If κ is the successor of a cardinal, we consider weak κ-normality and prove that if κ = μ+ and μ is a regular cardinal then (1) μ< μ = μ if and only if there is a nontrivial κ-complete weakly κ-normal ideal on κ, and (2) if μ< μ = μ < λ<μ = λ then there is a nontrivial κ-complete weakly κ-normal fine ideal on Pκ(λ).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baumgartner, J., Taylor, A., and Wagon, S., On splitting stationary subsets of large cardinals, this Journal, vol. 42 (1977), pp. 203214.Google Scholar
[2]Jech, T., Stationary subsets of inaccessible cardinals, Axiomatic set theory (Baumgartner, J., editor), Contemporary Mathematics, vol. 31, American Mathematical Society, Providence, Rhode Island, 1984, pp. 115142.CrossRefGoogle Scholar
[3]Jech, T., Set theory, Academic Press, New York, 1978.Google Scholar
[4]Jech, T., Some combinatorial problems concerning uncountable cardinals, Annals of Mathematical Logic, vol. 5 (1973), pp. 165198.CrossRefGoogle Scholar
[5]Mahlo, P., Über lineare trasfinite Mengen, Berichte über die Verhandlungen der Könglich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, vol. 63 (1911), pp. 187225.Google Scholar
[6]Mahlo, P., Z̃ur Theorie und Andwendung der ρ 0-Z̃ahlen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, vol. 64 (1912), pp. 108112.Google Scholar
[7]Mahlo, P., Z̃ur Theorie und Andwendung der ρ 0-Z̃ahlen. II, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, vol. 65 (1913), pp. 268282.Google Scholar