Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T03:59:57.096Z Has data issue: false hasContentIssue false

Trois theoremes sur l'induction pour les formules ouvertes munies de l'exponentielle

Published online by Cambridge University Press:  12 March 2014

Sedki Boughattas*
Affiliation:
6 Rue Seveste, 75018 Paris, France, E-mail: bougatas@logique.jussieu.fr

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Boughattas, S., L'induction ouvert dans les anneaux discrets ordonnés et normaux nest pas finiment axiomatisable, Journal of the London Mathematical Society, vol. 53 (1996), no. 2, pp. 455463.CrossRefGoogle Scholar
[2]Chang, C. C. and Keisler, J. H., Model theory, North-Holland, Amsterdam, 1974.Google Scholar
[3]Khelif, A., communication personnelle, 11 1996.Google Scholar
[4]Otero, M., Models of open induction, Thesis for degree of doctor of philosophy, University of Oxford, 1991.Google Scholar
[5]Shepherdson, J. C., A non-standard model for a free variable fragment of number theory, Bulletin de l'cademie Polonaise des Sciences, vol. 12 (1964), pp. 7986.Google Scholar
[6]van den Dries, L., Exponential rings, exponential polynomials, exponential functions, Pacific Journal of Mathematics, vol. 113 (1984), no. 1.CrossRefGoogle Scholar
[7]Wilkie, A. J., Some results and problems on weak systems of arithmetic, Logic colloquium '77, North-Holland, 1978, pp. 285296.CrossRefGoogle Scholar