Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:43:12.974Z Has data issue: false hasContentIssue false

Topological dynamics of definable group actions

Published online by Cambridge University Press:  12 March 2014

Ludomir Newelski*
Affiliation:
Instytut Matematyczny, Uniwersytet Wrocławski, PL. Grunwaldzki2/4, 50-384 Wrocław, Poland, E-mail: newelski@math.uni.wroc.pl

Abstract

We interpret the basic notions of topological dynamics in the model-theoretic setting, relating them to generic types of definable group actions and their generalizations.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[A]Auslander, J., Minimal flows and their extensions, North Holland, Amsterdam, 1988.Google Scholar
[E]Ellis, R., Lectures on topological dynamics, Benjamin, New York, 1969.Google Scholar
[HPP]Hrushovski, E., Peterzil, Y., and Pillay, A., Groups, measures, and the NIP, Journal of the American Mathematical Society, vol. 21 (2008), pp. 563596.CrossRefGoogle Scholar
[MS]Marker, D. and Steinhorn, Ch., Definable types in o-minimal theories, this Journal, vol. 59 (1994), pp. 185198.Google Scholar
[Nl]Newelski, L., On type-definable subgroups of a stable group, Notre Dame Journal of Formal Logic, vol. 32 (1991), pp. 173187.CrossRefGoogle Scholar
[N2]Newelski, L., The diameter of a Lascar strong type, Fundamenta Mathematicae, vol. 176 (2003), pp. 157170.CrossRefGoogle Scholar
[NPl]Newelski, L. and Petrykowski, M., Coverings of groups and types, Journal of London Mathematical Society. Second Series, vol. 71 (2005), pp. 121.CrossRefGoogle Scholar
[NP2]Newelski, L. and Petrykowski, M., Weak generic types and coverings of groups I, Fundamenta Mathematicae, vol. 191 (2006), pp. 201225.CrossRefGoogle Scholar
[PP]Peterzil, Y. and Pillay, A., Generic sets in definably compact groups, Fundamenta Mathematicae, vol. 193 (2007), pp. 153170.CrossRefGoogle Scholar
[Pe]Petrykowski, M., Generic properties of groups, Ph.D. thesis, Uniwersytet Wroclawski, 2006.Google Scholar
[Po]Poizat, B., Groupes stables, avec types generiques reguliers, this Journal, vol. 48 (1983), pp. 339355.Google Scholar
[Sh]Sheiah, S., Maximal bounded index subgroup for dependent theories, Proceedings of the American Mathematical Society, vol. 136 (2008), pp. 10871091.CrossRefGoogle Scholar
[W]Wagner, F., Simple theories, Kluwer, Dodrecht, 2000.CrossRefGoogle Scholar