No CrossRef data available.
Published online by Cambridge University Press: 27 January 2025
A left-variable word over an alphabet A is a word over $A \cup \{\star \}$ whose first letter is the distinguished symbol $\star $ standing for a placeholder. The ordered variable word theorem ($\mathsf {OVW}$), also known as Carlson–Simpson’s theorem, is a tree partition theorem, stating that for every finite alphabet A and every finite coloring of the words over A, there exists a word $c_0$ and an infinite sequence of left-variable words $w_1, w_2, \dots $ such that $\{ c_0 \cdot w_1[a_1] \cdot \dots \cdot w_k[a_k] : k \in \mathbb {N}, a_1, \dots , a_k \in A \}$ is monochromatic.
In this article, we prove that $\mathsf {OVW}$ is $\Pi ^0_4$-conservative over $\mathsf {RCA}_0 + \mathsf {B}\Sigma ^0_2$. This implies in particular that $\mathsf {OVW}$ does not imply $\mathsf {ACA}_0$ over $\mathsf {RCA}_0$. This is the first principle for which the only known separation from $\mathsf {ACA}_0$ involves non-standard models.