We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
EINSTEIN INSTITUTE OF MATHEMATICS HEBREW UNIVERSITY OF JERUSALEM 91904, JERUSALEM, ISRAELE-mail: kaplan@math.huji.ac.il
TOMASZ RZEPECKI
Affiliation:
EINSTEIN INSTITUTE OF MATHEMATICS HEBREW UNIVERSITY OF JERUSALEM 91904, JERUSALEM, ISRAEL and INSTYTUT MATEMATYCZNY UNIWERSYTET WROCŁAWSKI PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLANDE-mail: tomasz.rzepecki@math.uni.wroc.pl
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Bodirsky, M., Bradley-Williams, D., Pinsker, M., and Pongrácz, A., The universal homogeneous binary tree. Journal of Logic and Computation, vol. 28 (2018), no. 1, pp. 133–163.10.1093/logcom/exx043CrossRefGoogle Scholar
[2]
Droste, M., Holland, W. C., and Macpherson, H. D., Automorphism groups of infinite semilinear orders (II). Proceedings of the London Mathematical Society, vol. s3-58 (1989), no. 3, pp. 479–494.10.1112/plms/s3-58.3.479CrossRefGoogle Scholar
[3]
Duchesne, B., Topological properties of Ważewski dendrite groups. Journal de l’École polytechnique—Mathématiques, vol. 7 (2020), pp. 431–477.10.5802/jep.121CrossRefGoogle Scholar
[4]
Hodges, W., A Shorter Model Theory, Cambridge University Press, New York, NY, 1997.Google Scholar
[5]
Ivanov, A. A., Generic expansions of
$\omega$
-categorical structures and semantics of generalized quantifiers. this Journal, vol. 64 (1999), no. 2, pp. 775–789.Google Scholar
[6]
Kaplan, I. and Shelah, S., A dependent theory with few indiscernibles. Israel Journal of Mathematics, vol. 202 (2014), no. 1, pp. 59–103.10.1007/s11856-014-1067-2CrossRefGoogle Scholar
[7]
Kaplan, I. and Shelah, S., Examples in dependent theories, this Journal, vol. 79 (2014), no. 2, pp.585–619.Google Scholar
[8]
Kechris, A. S., Pestov, V. G., and Todorcevic, S., Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geometric & Functional Analysis, vol. 15 (2005), no. 1, pp. 106–189.10.1007/s00039-005-0503-1CrossRefGoogle Scholar
[9]
Kechris, A. S. and Rosendal, C., Turbulence, amalgamation, and generic automorphisms of homogeneous structures. Proceedings of the London Mathematical Society, vol. 94 (2007), no. 2, pp. 302–350.10.1112/plms/pdl007CrossRefGoogle Scholar
[10]
Kuske, D. and Truss, J. K., Generic automorphisms of the universal partial order. Proceedings of the American Mathematical Society, vol. 129 (2001), no. 7, pp. 1939–1948.CrossRefGoogle Scholar
[11]
Kwiatkowska, A., The group of homeomorphisms of the cantor set has ample generics. Bulletin of the London Mathematical Society, vol. 44 (2012), no. 6, pp. 1132–1146.10.1112/blms/bds039CrossRefGoogle Scholar
[12]
Kwiatkowska, A. and Malicki, M., Ordered structures and large conjugacy classes. Journal of Algebra, vol. 557 (2020), pp. 67–96.10.1016/j.jalgebra.2020.03.021CrossRefGoogle Scholar
[13]
Macpherson, D., A survey of homogeneous structures. Discrete Mathematics, vol. 311 (2011), no. 15, pp. 1599–1634.10.1016/j.disc.2011.01.024CrossRefGoogle Scholar
[14]
Simon, P., A Guide to NIP Theories, Lecture Notes in Logic, vol. 44, Association for Symbolic Logic and Cambridge Scientific, Chicago, IL and Cambridge, 2015.Google Scholar
Siniora, D. N., Automorphism groups of homogeneous structures, Ph.D. thesis, University of Leeds, 2017.Google Scholar
[17]
Truss, J. K., Generic automorphisms of homogeneous structures. Proceedings of the American Mathematical Society, vol. s3-65 (1992), no. 1, pp. 121–141.10.1112/plms/s3-65.1.121CrossRefGoogle Scholar
[18]
Truss, J. K., On notions of genericity and mutual genericity, this Journal, vol. 72 (2007), no. 3, pp. 755–766.Google Scholar