Published online by Cambridge University Press: 12 March 2014
With every σ-ideal I on a Polish space we associate the σ-ideal I* generated by the closed sets in I. We study the forcing notions of Borel sets modulo the respective σ -ideals I and I* and find connections between their forcing properties. To this end, we associate to a σ-ideal on a Polish space an ideal on a countable set and show how forcing properties of the forcing depend on combinatorial properties of the ideal.
We also study the 1–1 or constant property of σ-ideals, i.e., the property that every Borel function defined on a Borel positive set can be restricted to a positive Borel set on which it either 1–1 or constant. We prove the following dichotomy: if I is a σ-ideal generated by closed sets, then either the forcing P1 adds a Cohen real, or else I has the 1–1 or constant property.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.