Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:11:32.157Z Has data issue: false hasContentIssue false

Closures in ℵ0-categorical bilinear maps

Published online by Cambridge University Press:  12 March 2014

Andreas Baudisch*
Affiliation:
Humboldt-Universität Zu Berlin, Institut für Mathematik, D-10099 Berlin, Germany, E-mail: baudisch@mathematik.hu-berlin.de

Abstract

It is possible to define a combinatorial closure on alternating bilinear maps with few relations similar to that in [2]. For the ℵ0-categorical case we show that this closure is part of the algebraic closure.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baudisch, A., Decidability and stability of free nilpotent Lie algebras andfree nilpotent p-groups of finite exponent, Annals of Mathematical Logic, vol. 23 (1982), pp. 125.CrossRefGoogle Scholar
[2]Baudisch, A., A new uncountably categorical group, Transactions of the American Mathematical Society, vol. 348 (1996), pp. 38893940.CrossRefGoogle Scholar
[3]Baur, W., Cherlin, G., and Macintyre, A., Totally categorical groups and rings, Journal of Algebra, vol. 57 (1979), pp. 407440.CrossRefGoogle Scholar
[4]Felgner, U., 0-categorical stable groups, Mathematische Zeitschrift, vol. 160 (1978), pp. 2749.CrossRefGoogle Scholar
[5]Hrushovski, E., A stable ω-categorical pseudoplane, preprint, 1989.Google Scholar
[6]Hrushovski, E., A new strongly minimal set, Annals of Pure and Applied Logic, vol. 62 (1993), pp. 147166.CrossRefGoogle Scholar
[7]Lachlan, A.H., Two conjectures on the stability of ω-categorical structures, Fundamenta Mathematicae, vol. 81 (1974), pp. 133145.CrossRefGoogle Scholar