Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T20:04:38.159Z Has data issue: false hasContentIssue false

Amoeba reals

Published online by Cambridge University Press:  12 March 2014

Haim Judah
Affiliation:
Department of Mathematics and Computer Science, Bar-Ilan University, 52 900 Ramat-Gan, Israel, E-mail: judah@bimacs.cs.biu.ac.il
Miroslav Repickẏ
Affiliation:
Matematickẏ Ústav Sav, Jesenná 5, 041 54 Košice, Slovakia, E-mail: repicky@kosice.upjs.sk

Abstract

We define the ideal with the property that a real omits all Borel sets in the ideal which are coded in a transitive model if and only if it is an amoeba real over this model. We investigate some other properties of this ideal. Strolling through the "amoeba forest" we gain as an application a modification of the proof of the inequality between the additivities of Lebesgue measure and Baire category.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bagaria, J. and Judah, H., Amoeba forcing, Suslin absoluteness and additivity of measure, Set theory of the continuum, (Judah, H.et al., editors), MSRI Publications, vol. 26, Springer-Verlag, Berlin, 1992, pp. 155173.CrossRefGoogle Scholar
[2]Bartoszyński, T., Additivity of measure implies additivity of category, Transactions of the American Mathematical Society, vol. 281 (1984), pp. 209213.CrossRefGoogle Scholar
[3]Bartoszyński, T. and Judah, H., Jumping with random reals, Annals of Pure and Applied Logic, vol. 48 (1990), pp. 197213.CrossRefGoogle Scholar
[4]Brendle, J. and Judah, H., Perfect set of random reals, Israel Journal of Mathematics, vol. 83 (1993), pp. 153176.CrossRefGoogle Scholar
[5]Cichoń, J., Kamburelis, A., and Pawlikowski, J., On dense subsets of measure algebra, Proceedings of the American Mathematical Society, vol. 94 (1985), pp. 142146.CrossRefGoogle Scholar
[6]Fremlin, D. H., Cichoń's diagram, Séminaire d'initiation à l'analyse: G. Choquet—M. Rogalski— J. Saint-Raymond 23ème année: 1983/84 (Publications Mathématiques de l'Université Pierre et Marie Curie, no. 66), Université Paris-VI, Paris, 1984, Exposé 5.Google Scholar
[7]Judah, H. and Shelah, S., The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing), this Journal, vol. 55 (1990), pp. 909927.Google Scholar
[8]Miller, A. W., Additivity of measure implies dominating reals, Proceedings of the American Mathematical Society, vol. 91 (1984), pp. 111117.CrossRefGoogle Scholar
[9]Morgan, J. C. II, Point set theory, Marcel Dekker, New York, 1990.Google Scholar
[10]Raisonnier, J. and Stern, J., The strength of measurability hypothesis, Israel Journal of Mathematics, vol. 50, 4 (1985), pp. 337349.CrossRefGoogle Scholar
[11]Truss, J. K., Sets having calibre ℵ1, Logic Colloquium '76 (Gandy, R. and Hyland, M., editors), North-Holland, Amsterdam, 1977, pp. 595612.Google Scholar
[12]Truss, J. K., Connections between different amoeba algebras, Fundamenta Mathematicae, vol. 130 (1988), pp. 137155.CrossRefGoogle Scholar