Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:39:14.202Z Has data issue: false hasContentIssue false

Dosimetric feasibility of magnetic resonance (MR)-based dose calculation of prostate radiotherapy using multilevel threshold algorithm

Published online by Cambridge University Press:  20 June 2017

Turki Almatani*
Affiliation:
College of Medicine, Swansea University, Swansea, UK
Richard P. Hugtenburg
Affiliation:
College of Medicine, Swansea University, Swansea, UK Department of Medical Physics and Clinical Engineering, Singleton Hospital, ABM University Health Board, Swansea, UK
Ryan D. Lewis
Affiliation:
Department of Medical Physics and Clinical Engineering, Singleton Hospital, ABM University Health Board, Swansea, UK
Susan E. Barley
Affiliation:
Oncology Systems Limited, Shrewsbury, UK
Mark A. Edwards
Affiliation:
Department of Medical Physics and Clinical Engineering, Singleton Hospital, ABM University Health Board, Swansea, UK
*
Correspondence to: Turki Almatani, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, Tel: 0044 1792 602720. UK. E-mail: turkialmatani@gmail.com

Abstract

Objective

The development of magnetic resonance (MR) imaging systems has been extended for the entire radiotherapy process. However, MR images provide voxel values that are not directly related to electron densities, thus MR images cannot be used directly for dose calculation. The aim of this study is to investigate the feasibility of dose calculations to be performed on MR images and evaluate the necessity of re-planning.

Methods

A prostate cancer patient was imaged using both MR and computed tomography (CT). The multilevel threshold (MLT) algorithm was used to categorise voxel values in the MR images into three segments (air, water and bone) with homogeneous Hounsfield units (HU). An intensity-modulated radiation therapy plan was generated from CT images of the patient. The plan was then copied to the segmented MR datasets and the doses were recalculated using pencil beam (PB) and collapsed cone (CC) algorithms and Monte Carlo (MC) modelling.

Results

γ Evaluation showed that the percentage of points in regions of interest with γ<1 (3%/3 mm) were more than 94% in the segmented MR. Compared with the planning CT plan, the segmented MR plan resulted in a dose difference of –0·3, 0·8 and –1·3% when using PB, CC and MC algorithms, respectively.

Conclusion

The segmentation and conversion of MR images into HU data using the MLT algorithm, used in this feasibility study, can be used for dose calculation. This method can be used as a dosimetric assessment tool and can be easily implemented in the clinic.

Type
Original Articles
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fütterer, J J, Barentsz, J O, Heijmink, S W. Value of 3-T magnetic resonance imaging in local staging of prostate cancer. Top Magn Reson Imaging 2008; 19 (6): 285289.CrossRefGoogle ScholarPubMed
2. Murphy, M J. Adaptive Motion Compensation in Radiotherapy. Boca Raton, FL: CRC Press, 2011.CrossRefGoogle Scholar
3. Schmidt, M A, Payne, G S. Radiotherapy planning using MRI. Phys Med Biol 2015; 60 (22): R323.CrossRefGoogle ScholarPubMed
4. Jaffray, D A, Siewerdsen, J H. Cone-beam computed tomography with a flat-panel imager: initial performance characterization. Med Phys 2000; 27 (6): 13111323.CrossRefGoogle ScholarPubMed
5. Fotina, I, Hopfgartner, J, Stock, M, Steininger, T, Lütgendorf-Caucig, C, Georg, D. Feasibility of CBCT-based dose calculation: comparative analysis of HU adjustment techniques. Radiother Oncol 2012; 104 (2): 249256.CrossRefGoogle ScholarPubMed
6. Almatani, T, Hugtenburg, R P, Lewis, R, Barley, S, Edwards, M. Simplified material assignment for cone beam computed tomography-based dose calculations of prostate radiotherapy with hip prostheses. J Radiother Pract 2016; 15 (2): 170180.CrossRefGoogle Scholar
7. Almatani, T, Hugtenburg, R P, Lewis, R D, Barley, S E, Edwards, M A. Automated algorithm for CBCT-based dose calculations of prostate radiotherapy with bilateral hip prostheses. Br J Radiol 2016; 89 (1066): 20160443.CrossRefGoogle ScholarPubMed
8. Kan, M W K, Leung, L H T, Wong, W, Lam, N. Radiation dose from cone beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2008; 70 (1): 272279.CrossRefGoogle ScholarPubMed
9. Lagendijk, J J W, Raaymakers, B W, van Vulpen, M. The magnetic resonance imaging-linac system. Semin Radiat Oncol 2014; 24 (3): 207209.CrossRefGoogle ScholarPubMed
10. Mutic, S, Dempsey, J F. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 2014; 24 (3): 196199.CrossRefGoogle ScholarPubMed
11. Stanescu, T, Tadic, T, Jaffray, D A. Commissioning of an MR-guided radiation therapy system. Int J Radiat Oncol Biol Phys 2014; 90 (1): S94S95.CrossRefGoogle Scholar
12. Eilertsen, K, Vestad, LN, Geier, O, Skretting, A. A simulation of MRI based dose calculations on the basis of radiotherapy planning CT images. Acta Oncol. 2008; 47 (7): 12941302.CrossRefGoogle ScholarPubMed
13. Kerkmeijer, L G W, Fuller, C D, Verkooijen, H M et al. The MRI-Linear Accelerator Consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front Oncol. 2016; 6: 215.CrossRefGoogle ScholarPubMed
14. Raaymakers, B W, Raaijmakers, A J E, Kotte, A, Jette, D, Lagendijk, J J W. Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys Med Biol 2004; 49 (17): 4109.CrossRefGoogle Scholar
15. Lagendijk, J, van Vulpen, M, Raaymakers, B W. The development of the MRI linac system for online MRI-guided radiotherapy: a clinical update. J Intern Med 2016; 280 (2): 203208.CrossRefGoogle ScholarPubMed
16. Korhonen, J, Kapanen, M, Keyriläinen, J, Seppälä, T, Tuomikoski, L, Tenhunen, M. Influence of MRI-based bone outline definition errors on external radiotherapy dose calculation accuracy in heterogeneous pseudo-CT images of prostate cancer patients. Acta Oncol 2014; 53 (8): 11001106.CrossRefGoogle ScholarPubMed
17. Johansson, A, Karlsson, M, Nyholm, T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys. 2011; 38 (5): 27082714.CrossRefGoogle ScholarPubMed
18. Hsu, S-H, Cao, Y, Huang, K, Feng, M, Balter, J M. Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy. Phys Med Biol 2013; 58 (23): 8419.CrossRefGoogle ScholarPubMed
19. Dowling, J A, Lambert, J, Parker, J et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys 2012; 83 (1): e5e11.CrossRefGoogle ScholarPubMed
20. Andreasen, D, Van Leemput, K, Edmund, J M. A patch-based pseudo-CT approach for MRI-only radiotherapy in the pelvis. Med Phys 2016; 43 (8): 47424752.CrossRefGoogle ScholarPubMed
21. Keereman, V, Fierens, Y, Broux, T, De Deene, Y, Lonneux, M, Vandenberghe, S. MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 2010; 51 (5): 812818.CrossRefGoogle ScholarPubMed
22. Lambert, J, Greer, P B, Menk, F et al. MRI-guided prostate radiation therapy planning: investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol. 2011; 98 (3): 330334.CrossRefGoogle ScholarPubMed
23. Keereman, V, Vanhove, C, Vandenberghe, S. MRI-based attenuation correction for emission tomography using ultrashort echo time sequences. In: Keereman V, Vanhove C and Vandenberghe S (eds). MRI of Tissues with Short T2s or T2*s. Chichester, UK: John Wiley & Sons, 2012: 235247.Google Scholar
24. Korhonen, J, Kapanen, M, Keyriläinen, J, Seppälä, T, Tenhunen, M. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys 2014; 41 (1): 011704.CrossRefGoogle ScholarPubMed
25. Kapanen, M, Tenhunen, M. T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning. Acta Oncol 2013; 52 (3): 612618.CrossRefGoogle ScholarPubMed
26. Koivula, L, Wee, L, Korhonen, J. Feasibility of MRI-only treatment planning for proton therapy in brain and prostate cancers: dose calculation accuracy in substitute CT images. Med Phys 2016; 43 (8): 46344642.CrossRefGoogle ScholarPubMed
27. Dunlop, A, McQuaid, D, Nill, S et al. Comparison of CT number calibration techniques for CBCT-based dose calculation. Strahlenther Onkol 2015; 191 (12): 970978.CrossRefGoogle ScholarPubMed
28. Kawrakow, I, Rogers, D W O. The EGSnrc code system. NRC Report PIRS-701, Ottawa: NRC, 2000.CrossRefGoogle Scholar
29.HPC-Wales. http://www.hpcwales.co.uk. Accessed on 5th December 2016.Google Scholar
30. Knöös, T, Wieslander, E, Cozzi, L et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol 2006; 51 (22): 5785.CrossRefGoogle ScholarPubMed