Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T19:39:57.506Z Has data issue: false hasContentIssue false

Weakly dissipative dust-ion acoustic wave modulation

Published online by Cambridge University Press:  26 January 2016

H. Alinejad*
Affiliation:
Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167, Iran Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha 55134-441, Iran
M. Mahdavi
Affiliation:
Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167, Iran
M. Shahmansouri
Affiliation:
Department of Physics, Faculty of Science, Arak University, Arak 38156-88349, Iran
*
Email address for correspondence: alinejad@nit.ac.ir

Abstract

The modulational instability of dust-ion acoustic (DIA) waves in an unmagnetized dusty plasma is investigated in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization recombination and ion loss. Based on the multiple space and time scales perturbation, a new modified nonlinear Schrödinger equation governing the evolution of modulated DIA waves is derived with a linear damping term. It is shown that the combined action of all dissipative mechanisms due to collisions between particles reveals the permitted maximum time for the occurrence of the modulational instability. The influence on the modulational instability regions of relevant physical parameters such as ion temperature, dust concentration, ionization, recombination and ion loss is numerically examined. It is also found that the recombination frequency controls the instability growth rate, whereas recombination and ion loss make the instability regions wider.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alinejad, H. 2010 Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons. Astrophys. Space Sci. 327, 131137.CrossRefGoogle Scholar
Alinejad, H. 2012 Influence of arbitrarily charged dust and trapped electrons on propagation of localized dust ion-acoustic waves. Astrophys. Space Sci. 337, 223.CrossRefGoogle Scholar
Alinejad, H. & Tribeche, M. 2010 Dust ion-acoustic shock waves in charge varying dusty plasmas with electrons having vortexlike velocity distribution. Phys. Plasmas 17, 123712.CrossRefGoogle Scholar
Amin, M. R., Morfill, G. E. & Shukla, P. K. 1998 Modulational instability of dust-acoustic and dust-ion-acoustic waves. Phys. Rev. E 58, 6517.CrossRefGoogle Scholar
Bains, A. S., Tribeche, M. & Gill, T. S. 2011 Modulational instability of ion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 18, 022108.Google Scholar
Barkan, A., D’Angelo, N. & Merlino, R. L. 1996 Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 44, 239.CrossRefGoogle Scholar
Boufendi, L. & Bouchoule, A. 2002 Industrial developments of scientific insights in dusty plasmas. Plasma Sources Sci. Technol. 11, A211.CrossRefGoogle Scholar
Cramer, N. F. & Vladimirov, S. V. 2001 Waves in dusty plasma discharges. Phys. Scr. T 89, 122.CrossRefGoogle Scholar
Duan, W.-S., , K.-P. & Zhao, J.-B. 2001 Hot dust acoustic solitary waves in dust plasma with variable dust charge. Chin. Phys. Lett. 18, 1088.Google Scholar
El-Labany, S. K. & El-Taibany, W. F. 2003 Dust acoustic solitary waves and double layers in a dusty plasma with trapped electrons. Phys. Plasmas 10, 4685.CrossRefGoogle Scholar
El-Taibany, W. F. & Sabry, R. 2005 Dust-acoustic solitary waves and double layers in a magnetized dusty plasma with nonthermal ions and dust charge variation. Phys. Plasmas 12, 082302.CrossRefGoogle Scholar
Fedele, R. & Schamel, H. 2002 Solitary waves in the Madelung’s fluid: connection between the nonlinear Schrödinger equation and the Korteweg–de Vries equation. Eur. Phys. J. B 27, 313.CrossRefGoogle Scholar
Fedele, R., Schamel, H. & Shukla, P. K. 2002 Solitons in the Madelung’s fluid. Phys. Scr. 98, 18.Google Scholar
Gharaee, H., Afghah, S. & Abbasi, H. 2011 Modulational instability of ion-acoustic waves in plasmas with superthermal electrons. Phys. Plasmas 18, 032116.CrossRefGoogle Scholar
Goree, J., Morfill, G. E., Tsytovich, V. N. & Vladimirov, S. V. 1999 Theory of dust voids in plasmas. Phys. Rev. E 59, 7055.CrossRefGoogle ScholarPubMed
Jeffery, A. & Kawahara, T. 1982 Asymptotic Methods in Nonlinear Wave Theory. Pitman.Google Scholar
Jukui, X. & He, L. 2003 Modulational instability of cylindrical and spherical dust ion-acoustic waves. Phys. Plasmas 10, 339.CrossRefGoogle Scholar
Kako, M. & Hasegawa, A. 1976 Stability of oblique modulation on an ion-acoustic wave. Phys. Fluids 19, 1967.CrossRefGoogle Scholar
Kokura, H., Yoneda, S., Nakamura, K., Mitsuhira, N., Nakamura, M. & Sugai, H. 1999 Diagnostic of surface wave plasma for oxide etching in comparison with inductive RF plasma. Jpn. J. Appl. Phys. 1 38, 5226.Google Scholar
Kourakis, I. & Shukla, P. K. 2003 Modulational instability and localized excitations of dust-ion acoustic waves. Phys. Plasmas 10, 3459.CrossRefGoogle Scholar
Kourakis, I. & Shukla, P. K. 2004 Finite ion temperature effects on oblique modulational stability and envelope excitations of dust-ion acoustic waves. Eur. Phys. J. D 28, 109.CrossRefGoogle Scholar
Kourakis, I. & Shukla, P. K. 2005 Nonlinear compressional electromagnetic ion-cyclotron wavepackets in space plasmas. Nonlinear Process. Geophys. 12, 441.CrossRefGoogle Scholar
Luo, Q. Z., D’Angelo, N. & Merlino, R. L. 1999 Experimental study of shock formation in a dusty plasma. Phys. Plasmas 6, 3455.CrossRefGoogle Scholar
Mamun, A. A. 2008 Dust–electron–acoustic shock waves due to dust charge fluctuation. Phys. Lett. A 372, 4610.CrossRefGoogle Scholar
Misra, A. P., Chowdhury, K. R. & Chowdhury, A. R. 2007 Saddle-node bifurcation and modulational instability associated with the pulse propagation of dust ion-acoustic waves in a viscous dusty plasma: a complex nonlinear Schrödinger equation. Phys. Plasmas 14, 012110.CrossRefGoogle Scholar
Moslem, W. M. & El-Taibany, W. F. 2005 Effect of two-temperature trapped electrons to nonlinear dust-ion-acoustic solitons. Phys. Plasmas 12, 122309.CrossRefGoogle Scholar
Mushtaq, A., Nasir Khattak, M., Zulfiqar, A. & Qamar, A. 2012 Dust ion acoustic soliton in pair-ion plasmas with non-isothermal electrons. Phys. Plasmas 19, 042304.CrossRefGoogle Scholar
Nakamura, Y., Bailung, H. & Shukla, P. K. 1999 Observation of ion-acoustic shocks in a dusty plasma. Phys. Rev. Lett. 83, 1602.CrossRefGoogle Scholar
Nakamura, Y. & Sarma, A. 2001 Observation of ion-acoustic solitary waves in a dusty plasma. Phys. Plasmas 8, 3921.CrossRefGoogle Scholar
Popel, S. I., Golub, A. P., Losseva, T. V., Ivlev, A. V., Khrapak, S. A. & Morfill, G. 2003 Weakly dissipative dust-ion-acoustic solitons. Phys. Rev. E 67, 056402.CrossRefGoogle ScholarPubMed
Robinson, P. A. 1997 Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507.CrossRefGoogle Scholar
Saini, N. S. & Kourakis, I. 2008 Dust-acoustic wave modulation in the presence of superthermal ions. Phys. Plasmas 15, 123701.CrossRefGoogle Scholar
Samsonov, D. & Goree, J. 1999 Instabilities in a dusty plasma with ion drag and ionization. Phys. Rev. E 59, 1047.CrossRefGoogle Scholar
Shahmansouri, M. & Alinejad, H. 2013 Dust acoustic shock waves in a suprathermal dusty plasma with dust charge fluctuation. Astrophys. Space Sci. 343, 251.CrossRefGoogle Scholar
Shukla, P. K. & Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. IOP.CrossRefGoogle Scholar
Shukla, P. K. & Silin, V. P. 1992 Dust ion-acoustic wave. Phys. Scr. 45, 508.CrossRefGoogle Scholar
Taniuti, T. & Yajima, N. 1969 Perturbation method for a nonlinear wave modulation. I. J. Math. Phys. 10, 1369.CrossRefGoogle Scholar
Tribeche, M. & Boumezoued, G. 2008 Effect of electron nonthermality on nonlinear electrostatic solitary waves in a charge varying dusty plasma. Phys. Plasmas 15, 053702.CrossRefGoogle Scholar
Vladimirov, S. V. & Ostrikov, K. N. 2004 Dynamic self-organization phenomena in complex ionized gas systems: new paradigms and technological aspects. Phys. Rep. 393, 175380.CrossRefGoogle Scholar
Vladimirov, S. V., Ostrikov, K. N. & Yu, M. Y. 1999 Ion-acoustic waves in a dust-contaminated plasma. Phys. Rev. E 60, 3257.CrossRefGoogle Scholar
Wang, Y., Guo, C., Jiang, X., Zhou, Z., Ni, X., Qian, P. & Shen, J. 2010 The effects of nonadiabatic dust charge variation and ultraviolet irradiation on the modulational instability of dust ion acoustic waves. Phys. Plasmas 17, 113701.CrossRefGoogle Scholar
Xue, J. K. 2003 Modulation of dust acoustic waves with non-adiabatic dust charge fluctuations. Phys. Lett. A 320, 226.CrossRefGoogle Scholar