Published online by Cambridge University Press: 07 February 2013
Recently, there has been great interest around quantum relativistic models for plasmas. In particular, striking advances have been obtained by means of the Klein–Gordon–Maxwell system, which provides a first-order approach to the relativistic regimes of quantum plasmas. The Klein–Gordon–Maxwell system provides a reliable model as long as the plasma spin dynamics is not a fundamental aspect, to be addressed using more refined (and heavier) models involving the Pauli–Schrödinger or Dirac equations. In this work, a further simplification is considered, tracing back to the early days of relativistic quantum theory. Namely, we revisit the square-root Klein–Gordon–Poisson system, where the positive branch of the relativistic energy–momentum relation is mapped to a quantum wave equation. The associated linear wave propagation is analyzed and compared with the results in the literature. We determine physical parameters where the simultaneous quantum and relativistic effects can be noticeable in weakly coupled electrostatic plasmas.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.