Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T21:32:55.647Z Has data issue: false hasContentIssue false

Theoretical investigations on the effect of different plasmas on growth and field emission properties of a spherical carbon nanotube (CNT) tip placed over cylindrical surfaces

Published online by Cambridge University Press:  09 August 2013

AARTI TEWARI
Affiliation:
Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110 042, India (aartitewari1386@rediffmail.com)
SURESH C. SHARMA
Affiliation:
Department of Applied Physics, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110 042, India (aartitewari1386@rediffmail.com)

Abstract

The theoretical investigations on the effect of different plasmas on the growth and field emission properties of a spherical carbon nanotube (CNT) tip placed over cylindrical CNT surfaces have been carried out for the typical glow discharge plasma parameters. Different plasmas such as H2, Ar, CH4 and CF4 have been considered, and the growth of the CNT in the presence of various plasmas has been estimated in the present investigation. This study suggests that the field emission from the CNT grown in the presence of the H2 plasma is largest. It is also found that amongst the plasmas considered, the CF4 plasma is the most favourable for the growth of the large radius CNT, since the radius achieved in the CF4 plasma is the largest.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, Y., Arzi, E. and Mohajerzadeh, S. 2008 NanoMat. Nanotech. 44, 149.Google Scholar
Ahn, K. S., Kim, J. S, Kim, C. O. and Hong, J. P. 2003 Carbon 41, 2481.CrossRefGoogle Scholar
Bonard, J. M., Salvetat, J. P., Stockli, T. and de Heer, W. A. 1998 Appl. Phys. Lett. 73, 918.Google Scholar
Chai, K. B., Seon, C. R., Chung, C.W., Yoon, N. S. and Choe, W. 2011 J. Appl. Phys. 109, 013312.CrossRefGoogle Scholar
Courteille, C., Hollenstein, C., Dorier, J. L., Gay, P., Schwarzenbach, W., Howling, A. A, Bertran, E., Viera, G., Martins, R. and Macarico, A. 1996 J. Appl. Phys. 80, 2069.CrossRefGoogle Scholar
Felten, A., Bittencourt, C., Pireaux, J. J., Van Lier, G. and Charlier, J. C. 2005 J. Appl. Phys. 98, 074308.CrossRefGoogle Scholar
Feng, T., Zhang, J. and Li, Q., 2007 Physica E 36, 28.CrossRefGoogle Scholar
Haaland, P., Garscadden, A. and Ganguly, B. 1996 Appl. Phys. Lett. 69, 904.CrossRefGoogle Scholar
Hayashi, Y. and Tachibana, K. 1994 Japan J. Appl. Phys. 33, 476.CrossRefGoogle Scholar
Herrebout, D., Bogaerts, A., Yan, M. and Gijbels, R. 2001 J. Appl. Phys. 90, 570.CrossRefGoogle Scholar
Kim, J.-H., Chung, K.-H. and Yoo, Y.- S. 2005 J. Korean Phys. Soc. 47, 249.Google Scholar
Lee, S. F., Chang, Y.-P. and Lee, L.-Y. 2009 J. Mater. Sci. Mater. Electron 20, 851.CrossRefGoogle Scholar
Lee, H., Kang, Y.-S., Lee, P. S. and Lee, J.-Y. 2002 J. Alloys Comp. 330, 569.Google Scholar
Lee, J., Lim, D., Choi, W. and Dimitrijev, S. 2012 J. Nanosci. Nanotech. 12, 1507.CrossRefGoogle Scholar
Nagai, T., Feng, Z., Kono, A. and Shoji, F. 2008 Phys. Plasmas 15, 050702.CrossRefGoogle Scholar
Sharma, S. C. and Tewari, A. 2011a Phys. Plasmas 18, 063503.CrossRefGoogle Scholar
Sharma, S. C. and Tewari, A. 2011b Phys. Plasmas 18, 083503.CrossRefGoogle Scholar
Sodha, M. S., Mishra, S. K. and Misra, S. 2009 Phys. Plasmas 16, 123701.CrossRefGoogle Scholar
Sodha, M. S., Misra, S., Mishra, S. K. and Srivastava, S. 2010 J. Appl. Phys. 107, 103307.CrossRefGoogle Scholar
Srivastava, S. K., Shukla, A. K., Vankar, V. D. and Kumar, V. 2005 Thin Solid Films 492, 124.CrossRefGoogle Scholar
Srivastava, S. K., Vankar, V. D. and Kumar, V. 2010 Nano-Micro Lett. 2, 46.CrossRefGoogle Scholar
Tewari, A., Walia, R. and Sharma, S. C. 2012 Phys. Plasmas 19, 013502.CrossRefGoogle Scholar
Wang, X. Q., Wang, M., He, P. M. and Xu, Y. B. 2004 J. Appl. Phys. 96, 6752.CrossRefGoogle Scholar
Wen, H.-C., Yang, K., Ou, K.-L., Wu, W.-F., Chou, C. P., Luo, R. C. and Chang, Y. M. 2006 Surf. Coat. Technol. 200, 166.Google Scholar
Xu, Z., Bai, X. D. and Wang, E. G. 2006 Appl. Phys. Lett. 88, 133107.CrossRefGoogle Scholar
Yau, W.-H. and Tsai, C.-H. 2012 Surf. Interface Anal. 44, 535.CrossRefGoogle Scholar
Zhi, C. Y., Bai, X. D. and Wang, E. G. 2002 Appl. Phys. Lett. 81, 1690.Google Scholar
Zhu, Y. W., Cheong, F. C., Yu, T., Xu, X. J., Lim, C. T., Thong, J. T. L., Shen, Z. X., Ong, C. K., Liu, Y. J., Wee, A. T. S., et al. 2005 Carbon 43, 395.CrossRefGoogle Scholar