Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:44:56.975Z Has data issue: false hasContentIssue false

Stationary nonlinear interaction between high- and low-frequency waves and the generation of density cavities in a plasma

Published online by Cambridge University Press:  13 March 2009

K. Baumgärtel
Affiliation:
Akademie der Wissenschaften der DDR, Zentralinstitut für Elektronenphysik, 1199 Berlin, Rudower Chaussee
K. Sauer
Affiliation:
Akademie der Wissenschaften der DDR, Zentralinstitut für Elektronenphysik, 1199 Berlin, Rudower Chaussee

Abstract

The nonlinear interaction of a high-frequency wave (transverse or longitudinal) and an ion-acoustic wave in a homogeneous plasma is investigated. The waves are assumed to be simultaneously excited by two localized external sinusoidal disturbances with frequencies ω0 and ωS in the plasma. From the coupled wave equations a system of ordinary differential equations for the spatial change of the amplitudes of the interacting waves (including the primary frequencies ω0, ωS and the mixed frequencies ω0±ωS) and a zero-frequency density disturbance is derived. The spatial development of the high-frequency amplitudes is characterized by localized regions of high intensities, coupled with local depressions of the plasma density. The influence of the initial amplitudes and the frequencies ω0, ωS on the maximum of the primary high-frequency amplitude and the ‘cavity’ depth is shown. The numerical results are compared with conclusions from a simplified model of three resonantly interacting normal modes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliev, Yu. M. & Silin, V. P. 1965 Soviet Phys. JETP, 48, 901.Google Scholar
Armstrong, J. A., Blombergen, N., Duouing, J. & Pershan, P. S. 1962 Phys. Rev. 127, 1918.CrossRefGoogle Scholar
Blombergen, N. 1965 Nonlinear optics. Benjamin.Google Scholar
Franklin, R. N., Hamberger, S. M., Lampis, G. & Smith, G. J. 1971 Phys. Rev. Lett. 27, 1119.CrossRefGoogle Scholar
Gorbunov, L. M. 1968 Soviet Phys. JETP, 55, 2298.Google Scholar
Lashmore-Davies, C. N. 1975 Plasma Phys. 17, 281.CrossRefGoogle Scholar
Morales, G. J., Lee, Y. C. & White, R. B. 1974 a Phys. Rev. Lett. 32, 457.CrossRefGoogle Scholar
Morales, G. J., Lee, Y. C. 1974 b Phys. Rev. Lett. 33, 1016.CrossRefGoogle Scholar
Nishikawa, K. 1968 J. Phys. Soc. Japan, 24, 916, 1152.CrossRefGoogle Scholar
Ohkubo, K. & Tanaka, S. 1972 Phys. Lett. A 39, 115.CrossRefGoogle Scholar
Ohkubo, K. & Tanaka, S. 1973 J. Phys. Soc. Japan, 34, 201.CrossRefGoogle Scholar
Piliya, A. D. 1973 Soviet Phys. JETP, 64, 1237.Google Scholar
Rosenbluth, M. N., White, R. B. & Liu, C. S. 1973 Phys. Rev. Lett. 31, 1190.CrossRefGoogle Scholar
Silin, V. P. 1973 Parametric interaction of high-powered radiation with plasma. Nauka, Moskau (russ.)Google Scholar
Sughihara, R. 1968 Phys. Fluids, 11, 178.CrossRefGoogle Scholar
Valeo, F. & Kruer, W. 1974 Phys. Rev. Lett. 33, 750.CrossRefGoogle Scholar
Volkov, T. F. 1958 Plasma physics and problems of controlled thermonuclear reactions III 336. (In Russian.)Google Scholar