Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:42:35.407Z Has data issue: false hasContentIssue false

Stability of a tokamak plasma with diffuse toroidal rotation

Published online by Cambridge University Press:  20 October 2020

O. E. López*
Affiliation:
Physics Department, Auburn University, Auburn, AL36849, USA
L. Guazzotto
Affiliation:
Physics Department, Auburn University, Auburn, AL36849, USA
*
Email address for correspondence: oelopez@auburn.edu

Abstract

The present work considers the stability of a high-$\beta$, large aspect ratio, circular plasma with diffuse profiles for the safety factor and the angular toroidal frequency (López & Guazzotto, Phys. Plasmas, vol. 24, 032501). An application of the Frieman–Rotenberg formalism results in a system of scalar eigenmode equations whose coupling is retained at the plasma–vacuum transition but is disregarded across the plasma column, which is a standard practice. The solution technique consists of a multidimensional shooting method for the poloidal harmonics; robust initial guesses are constructed by solving the dispersion relation in the static scenario with vanishing magnetic shear. Flow shear appears as a high-$\beta$ toroidal contribution, and we illustrate its destabilizing influence on $n=1$ external kink modes in the presence of ideal and resistive walls. Internal resonances are avoided by means of the selection of appropriate equilibrium parameters. The stabilizing influence of a finite positive average magnetic shear is also exemplified.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baylor, L. R., Burrell, K. H., Groebner, R. J., Houlberg, W. A., Ernst, D. P., Murakami, M. & Wade, M. R. 2004 Comparison of toroidal rotation velocities of different impurity ions in the DIII-D tokamak. Phys. Plasmas 11 (6), 31003105.CrossRefGoogle Scholar
Betti, R. 1998 Beta limits for the $N=1$ mode in rotating-toroidal-resistive plasmas surrounded by a resistive wall. Phys. Plasmas 5 (10), 36153631.CrossRefGoogle Scholar
Betti, R. & Freidberg, J. P. 1995 Stability analysis of resistive wall kink modes in rotating plasmas. Phys. Rev. Lett. 74, 29492952.CrossRefGoogle ScholarPubMed
Bondeson, A. & Ward, D. J. 1994 Stabilization of external modes in tokamaks by resistive walls and plasma rotation. Phys. Rev. Lett. 72, 27092712.CrossRefGoogle ScholarPubMed
Brunetti, D., Lazzaro, E. & Nowak, S. 2017 Ideal and resistive magnetohydrodynamic instabilities in cylindrical geometry with a sheared flow along the axis. Plasma Phys. Control. Fusion 59 (5), 055012.CrossRefGoogle Scholar
Catto, P. J., Bernstein, I. B. & Tessarotto, M. 1987 Ion transport in toroidally rotating tokamak plasmas. Phys. Fluids 30 (9), 27842795.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.Google Scholar
Chapman, I. T., Brown, S., Kemp, R. & Walkden, N. R. 2012 Toroidal velocity shear Kelvin–Helmholtz instabilities in strongly rotating tokamak plasmas. Nucl. Fusion 52 (4), 042005.CrossRefGoogle Scholar
Chapman, I. T., Walkden, N. R., Graves, J. P. & Wahlberg, C. 2011 The effects of sheared toroidal rotation on stability limits in tokamak plasmas. Plasma Phys. Control. Fusion 53 (12), 125002.CrossRefGoogle Scholar
Chu, M. S. 1998 Shear flow destabilization of a slowly rotating tokamak. Phys. Plasmas 5 (1), 183191.CrossRefGoogle Scholar
Chu, M. S., Greene, J. M., Jensen, T. H., Miller, R. L., Bondeson, A., Johnson, R. W. & Mauel, M. E. 1995 Effect of toroidal plasma flow and flow shear on global magnetohydrodynamic MHD modes. Phys. Plasmas 2 (6), 22362241.CrossRefGoogle Scholar
Cooper, W. A. 1988 Ballooning instabilities in tokamaks with sheared toroidal flows. Plasma Phys. Control. Fusion 30 (13), 18051812.CrossRefGoogle Scholar
DLMF 2020 NIST Digital library of mathematical functions. http://dlmf.nist.gov/ Release 1.0.26 of 2020-03-15.Google Scholar
Eriksson, L.-G., Righi, E. & Zastrow, K.-D. 1997 Toroidal rotation in ICRF-heated H-modes on JET. Plasma Phys. Control. Fusion 39 (1), 2742.CrossRefGoogle Scholar
Fitzpatrick, R. 2008 A sharp boundary model for the vertical and kink stability of large aspect-ratio vertically elongated tokamak plasmas. Phys. Plasmas 15 (9), 092502.CrossRefGoogle Scholar
Fitzpatrick, R. & Aydemir, A. Y. 1996 Stabilization of the resistive shell mode in tokamaks. Nucl. Fusion 36 (1), 1138.CrossRefGoogle Scholar
Freidberg, J. P. 2007 Plasma Physics and Fusion Energy. Cambridge University Press.CrossRefGoogle Scholar
Freidberg, J. P. 2014 Ideal MHD. Cambridge University Press.CrossRefGoogle Scholar
Freidberg, J. P. & Grossmann, W. 1975 Magnetohydrodynamic stability of a sharp boundary model of tokamak. Phys. Fluids 18 (11), 14941506.CrossRefGoogle Scholar
Freidberg, J. P. & Haas, F. A. 1973 Kink instabilities in a high-$\beta$ tokamak. Phys. Fluids 16 (11), 19091916.CrossRefGoogle Scholar
Freidberg, J. P. & Haas, F. A. 1974 Kink instabilities in a high-$\beta$ tokamak with elliptic cross section. Phys. Fluids 17, 440.CrossRefGoogle Scholar
Frieman, E. & Rotenberg, M. 1960 On hydromagnetic stability of stationary equilibria. Rev. Mod. Phys. 32, 898902.CrossRefGoogle Scholar
Goedbloed, J. P. 1982 Free-boundary high-beta tokamaks. III. Free-boundary stability. Phys. Fluids 25 (11), 20732088.CrossRefGoogle Scholar
Goedbloed, J. P., Keppens, R. & Poedts, S. 2010 Advanced Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Guazzotto, L., Freidberg, J. P. & Betti, R. 2008 A general formulation of magnetohydrodynamic stability including flow and a resistive wall. Phys. Plasmas 15 (7), 072503.CrossRefGoogle Scholar
Hameiri, E. 1983 The equilibrium and stability of rotating plasmas. Phys. Fluids 26 (1), 230237.CrossRefGoogle Scholar
Hassam, A. B. & Kulsrud, R. M. 1978 Time evolution of mass flows in a collisional tokamak. Phys. Fluids 21 (12), 22712279.CrossRefGoogle Scholar
Hazeltine, R. D. & Meiss, J. D. 2003 Plasma Confinement. Dover.Google Scholar
Hinton, F. L. & Wong, S. K. 1985 Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Fluids 28 (10), 30823098.CrossRefGoogle Scholar
Ito, A. & Nakajima, N. 2019 Magnetic flux coordinates for analytic high-beta tokamak equilibria with flow. Plasma Phys. Control. Fusion 61 (10), 105006.CrossRefGoogle Scholar
Lee, J. & Cerfon, A. 2019 Magnetic shear due to localized toroidal flow shear in tokamaks. Plasma Phys. Control. Fusion 61 (10), 105007.CrossRefGoogle Scholar
López, O. E. & Guazzotto, L. 2017 High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows. Phys. Plasmas 24 (3), 032501.CrossRefGoogle Scholar
Morris, R. C., Haines, M. G. & Hastie, R. J. 1996 The neoclassical theory of poloidal flow damping in a tokamak. Phys. Plasmas 3 (12), 45134520.CrossRefGoogle Scholar
Rhodes, D. J., Cole, A. J., Brennan, D. P., Finn, J. M., Li, M., Fitzpatrick, R., Mauel, M. E. & Navratil, G. A. 2018 Shaping effects on toroidal magnetohydrodynamic modes in the presence of plasma and wall resistivity. Phys. Plasmas 25 (1), 012517.CrossRefGoogle Scholar
Sabbagh, S. A., Sontag, A. C., Bialek, J. M., Gates, D. A., Glasser, A. H., Menard, J.E., Zhu, W., Bell, M. G., Bell, R. E., Bondeson, A., et al. 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas. Nucl. Fusion 46 (5), 635644.CrossRefGoogle Scholar
Shumlak, U. & Hartman, C. W. 1995 Sheared flow stabilization of the ${m}=1$ kink mode in $Z$ pinches. Phys. Rev. Lett. 75, 32853288.CrossRefGoogle ScholarPubMed
Solov'ev, L. S. 1968 The theory of hydromagnetic stability of toroidal plasma configurations. Sov. Phys. JETP 26, 400407.Google Scholar
Suckewer, S., Eubank, H. P., Goldston, R. J., McEnerney, J., Sauthoff, N. R. & Towner, H. H. 1981 Toroidal plasma rotation in the PLT tokamak with neutral-beam injection. Nucl. Fusion 21 (10), 13011309.CrossRefGoogle Scholar
Waelbroeck, F. L. 1996 Gyroscopic stabilization of the internal kink mode. Phys. Plasmas 3 (3), 10471053.CrossRefGoogle Scholar
Waelbroeck, F. L. & Chen, L. 1991 Ballooning instabilities in tokamaks with sheared toroidal flows. Phys. Fluids B 3 (3), 601610.CrossRefGoogle Scholar
Wahlberg, C. & Bondeson, A. 1997 Stability analysis of the ideal $m=n=1$ kink mode in toroidal geometry by direct expansion of the hydromagnetic equations. J. Plasma Phys. 57 (2), 327341.CrossRefGoogle Scholar
Wahlberg, C. & Bondeson, A. 2000 Stabilization of the internal kink mode in a tokamak by toroidal plasma rotation. Phys. Plasmas 7 (3), 923930.CrossRefGoogle Scholar
Wahlberg, C. & Bondeson, A. 2001 Stabilization of the mercier modes in a tokamak by toroidal plasma rotation. Phys. Plasmas 8 (8), 35953604.CrossRefGoogle Scholar
Wahlberg, C., Chapman, I. T. & Graves, J. P. 2009 Importance of centrifugal effects for the internal kink mode stability in toroidally rotating tokamak plasmas. Phys. Plasmas 16 (11), 112512.CrossRefGoogle Scholar
Wahlberg, C., Graves, J. P. & Chapman, I. T. 2013 Analysis of global hydromagnetic instabilities driven by strongly sheared toroidal flows in tokamak plasmas. Plasma Phys. Control. Fusion 55 (10), 105004.CrossRefGoogle Scholar