Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T02:19:51.718Z Has data issue: false hasContentIssue false

Self-organization and control in stimulated Raman backscattering

Published online by Cambridge University Press:  12 November 2013

MILOŠ M. ŠKORIĆ
Affiliation:
National Institute for Fusion Science, Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki-shi 509-5292, Japan (skoric.milos@nifs.ac.jp)
LJUBOMIR NIKOLIĆ
Affiliation:
Geomagnetic Laboratory, NRCan, Ottawa, ON K1A OY3, Canada
SEIJI ISHIGURO
Affiliation:
National Institute for Fusion Science, Graduate University for Advanced Studies, 322-6 Oroshi-cho, Toki-shi 509-5292, Japan (skoric.milos@nifs.ac.jp)

Abstract

A stimulated Raman scattering (SRS) on electron plasma waves in underdense plasmas is of a big concern in laser fusion due to an energy loss and target preheating. Complex features of large Backward-SRS (BRS) in experiments and simulations with laser fusion targets are found. Recently, to reach ultra-high intensities at multi-exawatts and beyond, relevant to high-energy physics, Raman amplification based on BRS was proposed; still, with high sensitivity and a narrow operational window. Firstly, we revisit a standard three-coupled mode model of BRS to show that the condition for an absolute instability is readily satisfied in uniform plasmas which excites large Raman signals from a background noise. It sets in for interaction length L0 shorter than, both, the plasma length L and absorption length La. Further, we point out a generic BRS feature, which due to a nonlinear frequency shift in large electron plasma wave (relativistic/trapping effects), instead to a steady state, saturates via intermittent pulsations with incoherent spectral broadening. A ‘break up’ of Manley–Rowe invariants is shown to predict non-stationary BRS. Finally, an intermediate intensity regime is originally proposed for coherent femto-second pulse generation in a thin exploding foil plasma, with scalings investigated by theory and particle simulations.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Forslund, D. W., Kindel, J. M. and Lindman, E. L. 1975 Phys. Fluids 18, 1002.CrossRefGoogle Scholar
Hinkell, D., Rosen, M. D., Williams, E. A., Langdon, A. B., Still, C. H., Callahan, D. A., Moody, J. D., Michel, P. A., Town, R. P. J., London, R. A. and Langer, S. H. 2011 Phys. Plasmas 18, 056312.CrossRefGoogle Scholar
Kono, M. and Škorić, M. M. 2010 Nonlinear Physics of Plasmas. Springer-Verlag, Berlin, Ch. 12.CrossRefGoogle Scholar
Kruer, W. L. 1990 Phys. Scr. T30, 5.CrossRefGoogle Scholar
Mourou, G. A., Fisch, N. J., Malkin, V. M., Toroker, Z., Khazanov, E. A., Sergeev, A. M., Tajima, T. and Le Garrec, B. 2012 Optics Commun. 285, 720.CrossRefGoogle Scholar
Škorić, M. M., Jovanović, M. S. and Rajković, M. R 1996 Phys. Rev. E 53, 4056; AIP Conf. Proc. 318, 380 (1994).Google Scholar
Škorić, M. M., Mima, K., Miyamoto, S., Maluckov, S. and Jovanović, M. S. 1997 AIP Conf. Proc. 406, 381; 1188, 15 (2009).Google Scholar
Trines, R. M. G. M., Fiuza, F., Bingham, R., Fonseca, R. A., Silva, L. O., Cairns, R. A. and Norreys, P. A. 2011 Nature Phys. 7, 87.CrossRefGoogle Scholar
Yin, L., Albright, B. J., Rose, H. A., Montgomery, D. S., Kline, J. L., Kirkwood, R. K., Michel, P., Bowers, K. J. and Bergen, B. 2013 Phys. Plasmas 20, 012702.CrossRefGoogle Scholar