Published online by Cambridge University Press: 16 January 2013
The two-fluid model of collisionless forced magnetic reconnection is considered where breaking the frozen-in flow constraint for magnetic field lines is provided by electron inertia. Following the Taylor problem, a tearing stable slab of plasma with a magnetic field reversal is subjected to a small-amplitude boundary perturbation that drives magnetic reconnection at the neutral surface within the plasma. It has been shown that unlike the resistive regime, where the two-fluid magnetohydrodynamics (MHD) description reduces to the single-fluid MHD regime at sufficiently small values of the ion inertial skin-depth, di ≡ c/ωpi (with ωpi as the ion plasma frequency), there is no room for the single-fluid MHD reconnection in the collisionless case, even at very small values of di. Meanwhile, contradictory to the resistive reconnection, the rate of collisionless Hall reconnection always decreases with time as reconnection proceeds. In particular, in the main stage of Hall reconnection, when transition between two main equilibria states are taking place, it scales as t−1/2.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.