Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:16:33.076Z Has data issue: false hasContentIssue false

The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

Published online by Cambridge University Press:  18 December 2014

Hai-Feng Zhang*
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China Nanjing Artillery Academy, Nanjing 211132, P. R. China
Shao-Bin Liu*
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
Yu-Chi Jiang
Affiliation:
Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
*
Email address for correspondence: hanlor@163.com, lsb@nuaa.edu.cn
Email address for correspondence: hanlor@163.com, lsb@nuaa.edu.cn

Abstract

In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bellan, P. M. 2006 Fundamentals of Plasma Physics. UK: Cambridge University.Google Scholar
Belotelov, V. I. and Zvezdin, A. K. 2005 JOSA B 22, 286.Google Scholar
Berger, V. 1998 Phys. Rev. Lett. 81, 4136.Google Scholar
Dong, L., Xiao, H.Fan, W.Zhao, H. and Yue, H. 2010 IEEE Trans. Plasma Sci. 38, 2486.Google Scholar
Fan, W. and Dong, L. 2010 Phys. Plasmas, 17, 073 506.CrossRefGoogle Scholar
Fu, T., Yang, Z.Shi, Z.Lan, F.Li, D. and Gao, X. 2013 Phys. Plasmas 20, 023 109.CrossRefGoogle Scholar
Ghasempour Ardakani, A. 2014 J. Opt. Soc. Am. B 31, 332.Google Scholar
Ginzberg, V. L. 1970 The Propagation of Electromagnetic Waves in Plasmas. New York: Pergamon.Google Scholar
Hojo, H. and Mase, A. 2004 J. Plasma Fusion Res. 80, 89.Google Scholar
Inoue, M., Fujikawa, R., Baryshev, A., Khanikaev, A., Lim, P. B., Uchida, H., Aktsipetrov, O., Fedyanin, A., Murzina, T. and Granovsky, A. 2006 J. Phys. D 39, R151.Google Scholar
Joannopoulos, J. J., Meade, R. D. and Winn, J. N. 1995 Photonic Crystals: Molding the Flow of Light. New Jersey: Princeton University Press.Google Scholar
John, S. 1987 Phys. Rev. Lett. 58, 2486.CrossRefGoogle Scholar
King, T., Kuo, W., Yang, T., Bian, T. and Wu, C. 2013 IEEE Photon. J. 5, 4700 110.CrossRefGoogle Scholar
Koerdt, C., Rikken, G. and Petrov, E. P. 2003 Appl. Phys. Lett. 82, 1538.Google Scholar
Kuzmiak, V. and Maradudin, A. A. 1997 Phys. Rev. B. 55, 4298.Google Scholar
Li, L. and Haggans, C. W. 1993 J. Opt. Soc. Am. A 10, 1184.Google Scholar
Li, Z. Y., Jiang, W. and Gu, B. Y. 1998 Phys. Rev. B 58, 3721.Google Scholar
Liu, S. B., Gu, C. Q., Zhou, J. J. and Yuan, N. C. 2006. Acta Phys. Sin. 55, 1283.Google Scholar
Mehdian, H., Mohammadzahery, Z. and Hasanbeigi, A. 2013 Phys. Plasmas 20, 043 505.Google Scholar
Mehdian, H., Mohammadzahery, Z. and Hasanbeigi, A. 2014 Phys. Plasmas 21, 012 101.CrossRefGoogle Scholar
Mitu, M. L., Toader, D., Banu, N., Scurtu, A., and Ticoş, C. M. 2013 J. Appl. Phys. 114, 113 305.Google Scholar
Moroz, A. 2002 Phys. Rev. B 66, 115 109.CrossRefGoogle Scholar
Qi, L. 2012 J. Appl. Phys. 111, 073 301.Google Scholar
Qi, L., Yang, Z., Lan, F., Gao, X. and Shi, Z. 2010 Phys. Plasmas 17, 042 501.CrossRefGoogle Scholar
Qi, L. and Zhang, X. 2011 Solid State Commun. 151, 1838.Google Scholar
Sakaguchi, T., Sakai, O. and Tachibana, K. 2007 J. Appl. Phys. 101, 073 305.Google Scholar
Sakai, O., Sakaguchi, T. and Tachibana, K. 2005 Plasma Phys. Control Fusion, 47, B617.Google Scholar
Sakai, O. and Tachibana, K. 2007 IEEE Transaction On Plasma Science 35, 1267.Google Scholar
Sakai, O. and Tachibana, K. 2012 Plasma Sources Sci. Technol. 21, 013 001.Google Scholar
Sözüer, H. S., Haus, J. W. and Inguva, R. 1992 Phys. Rev. B 5, 13 962.Google Scholar
Takeda, H. and Yoshino, K. 2003 Phys. Rev. B 67, 245 109.Google Scholar
Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A. and Kuramochi, E. 2005 Appl. Phys. Lett. 97, 151112.Google Scholar
Veselago, V. G. 1968 Sov. Phys. Uspekhi 10, 509.Google Scholar
Yablonovitch, E. 1987 Phys.Rev.Lett. 58, 2059.Google Scholar
Zhang, H. F., Li, M. and Liu, S. B. 2009 Acta Phys. Sin. 58, 1071.CrossRefGoogle Scholar
Zhang, H. F. and Liu, S. B. 2014a IEEE Photon. J. 6, 5 300112.Google Scholar
Zhang, H. F., Liu, S. B. and Kong, X. K. 2012 Phys. Plasmas 19, 122103.Google Scholar
Zhang, H. F., Liu, S. B. and Kong, X. K. 2013a J. Electromagn. Waves Appl. 27, 1276.Google Scholar
Zhang, H. F., Liu, S. B. and Kong, X. K. 2013b Prog. Electromagn. Res. 141, 267.Google Scholar
Zhang, H. F., Liu, S. B. and Kong, X. K. 2013c IEEE J. Light. Technol. 31, 1694.Google Scholar
Zhang, H. F., Liu, S. B. and Kong, X. K. 2013d Phys. Plasmas 20, 092105.Google Scholar
Zhang, H. F., Liu, S. B. and Kong, X. K. 2013e Physica B 410, 244.CrossRefGoogle Scholar
Zhang, H. F., Liu, S. B. and Kong, X. K. 2014b J. Electromagn. Wave Appl. 28, 165.Google Scholar
Zhang, H. F., Liu, S. B.Kong, X. K. and Bian, B. R. 2013f Phys. Plasmas 20 042 110.Google Scholar
Zhang, H. F., Liu, S. B.Kong, X. K.Bian, B. R. and Cuo, Y. N. 2012 Solid State Commun. 152, 1221.Google Scholar
Zhang, H. F., Liu, S. B., Kong, X. K., Chen, C. and Bian, B. R. 2013g Opt. Commun. 288, 82.Google Scholar
Zhang, H. F., Liu, S. B., Kong, X. K. and Li, B. X. 2013h Eur. Phys. J. D 67, 169.Google Scholar
Zhang, H. F., Liu, S. B., Kong, X. K., Zhou, L., Li, C. Z. and Bian, B. R. 2011 J. Appl. Phys. 110, 026104.Google Scholar
Zhang, H. F., Liu, S. B. and Li, B. X. 2013i Opt. Laser Technol. 50, 93.Google Scholar
Zhang, H. F., Liu, S. B. and Li, B. X. 2013j Opt. Commun. 307, 86.Google Scholar
Zhang, H. F., Liu, S. B.Yang, H. and Kong, X. K. 2013k Phys. Plasmas 20, 032 118.Google Scholar
Zvezdin, A. K. and Belotelov, V. I. 2004 Eur. Phys. J. B 37 479.Google Scholar