Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T03:49:55.081Z Has data issue: false hasContentIssue false

Particle aspect analysis of drift wave in the presence of inhomogeneous magnetic field

Published online by Cambridge University Press:  13 March 2009

M. S. Tiwari
Affiliation:
Department of Physics, University of Saugar, Sagar (M.P.)–470003, India
R. P. Pandey
Affiliation:
Applied Physics Section, Institute of Technology, Banaras Hindu University, Varanasi 221005, India
K. D. Misra
Affiliation:
Applied Physics Section, Institute of Technology, Banaras Hindu University, Varanasi 221005, India

Abstract

The theory of particle aspect analysis is extended to the drift wave in the presence of an inhomogeneous magnetic field. The dispersion relation and growth rate of the wave are evaluated and discussed when the magnetic field gradient is directed opposite to the density gradient. The plasma under consideration is assumed to be anisotropic and the effects of temperature anisotropy on the dispersion characteristics and growth rate of the wave are also studied. The dispersion relation and the growth rate are evaluated for the space plasma parameters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dawson, J. M. 1961 Phys. Fluid, 4, 869.CrossRefGoogle Scholar
Gary, S. P. 1983 J. Plasma Phys. 30, 75.CrossRefGoogle Scholar
Gary, S. P. & Sanderson, J. J. 1979 Phys. Fluids, 22, 1500.CrossRefGoogle Scholar
Hasegawa, A. 1971 J. Geophys. Res. 76, 5361.CrossRefGoogle Scholar
Hastings, D. E. & McCune, J. E. 1982 Phys. Fluids, 25, 509.CrossRefGoogle Scholar
Hudson, M. K. & Kennel, C. F. 1975 J. Geophys. Res. 80, 4581.CrossRefGoogle Scholar
Kelley, M. C. & Carlson, C. W. 1977 J. Geophys. Res. 82, 2343.CrossRefGoogle Scholar
Kintner, P. M. & Gurnett, D. A. 1978 J. Geophys. Res. 83, 39.CrossRefGoogle Scholar
Lyons, L. R. 1981 Physics of Auroral arc Formation (Geophys. Monograph 25, ed. Akasofu, S. I. and Kan, J. R.), p. 252. AGU.Google Scholar
Lusak, R. L. & Dum, C. T. 1983 J. Geophys. Res. 88, 365.CrossRefGoogle Scholar
Migliuolo, S. 1982 Phys. Fluids, 25, 2289.CrossRefGoogle Scholar
Migliuolo, S. & Patel, V. L. 1983 J. Plasma Phys. 29, 85.CrossRefGoogle Scholar
Misra, K. D. & Tiwari, M. S. 1977 Physica Scripta, 16, 142.CrossRefGoogle Scholar
Misra, K. D. & Tiwari, M. S. 1979 Can. J. Phys. 57, 1124.CrossRefGoogle Scholar
Misra, K. D. & Tiwari, M. S. 1980 Physica, 98C, 325.Google Scholar
Ng, P. H. & Patel, V. L. 1983 a Geophys. Res. Lett. 10, 17.CrossRefGoogle Scholar
Ng, P. H. & Patel, V. L. 1983 b J. Geophys. Res. 88, 10035.CrossRefGoogle Scholar
Patel, V. L., Ng, P. H. & Cahill, L. J. 1983 J. Geophys. Res. 88, 5677.CrossRefGoogle Scholar
Terashima, Y. 1967 Prog. Theo. Phys. 37, 775.CrossRefGoogle Scholar
Winske, D. & Gary, S. P. 1979 Phys. Fluids, 22, 665.CrossRefGoogle Scholar