No CrossRef data available.
Published online by Cambridge University Press: 03 April 2013
In a magnetized plasma containing charged dust whose motion is magnetized, one of the fundamental collective modes that could occur is the electrostatic dust cyclotron (EDC) wave with frequency near the dust cyclotron frequency. The EDC wave propagates nearly perpendicular to the magnetic field with a small parallel wave number, so that it can be driven unstable by ion flow along the magnetic field. Because unstable parallel wavelengths can be relatively large, this places constraints on the plasma device size. In this paper, we use linear kinetic theory to investigate the excitation of higher harmonic EDC waves that have wavelengths smaller than that of the fundamental mode. Collisions of charged particles with neutrals and Coulomb collisions including dust–dust collisions are taken into account. Constraints on possible parameter ranges arising from collisional effects or from requiring stability of other waves are discussed. Numerical results are presented for possible sets of laboratory dusty plasma parameters.