Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:52:41.068Z Has data issue: false hasContentIssue false

Numerical study of the sheath in magnetized dusty plasma with two-temperature electrons

Published online by Cambridge University Press:  14 July 2014

I. Driouch*
Affiliation:
Laboratory of Physics of Matter and Radiations, Department of Physics, Faculty of Science, University Mohammed I, BP. 717, 60000 Oujda, Morocco
H. Chatei
Affiliation:
Laboratory of Physics of Matter and Radiations, Department of Physics, Faculty of Science, University Mohammed I, BP. 717, 60000 Oujda, Morocco
M. El Bojaddaini
Affiliation:
Laboratory of Physics of Matter and Radiations, Department of Physics, Faculty of Science, University Mohammed I, BP. 717, 60000 Oujda, Morocco
*
Email address for correspondence: driouch_ismael@yahoo.fr

Abstract

Fluid simulations are used to investigate a multi-component magnetized dusty plasma sheath. The model consists of positive ions, dust grains, and two species of electron populations. These electrons are assumed to be a sum of two Maxwellian distributions with two different temperatures (cold and hot). According to multi-fluid equations and some dimensionless variables, the dimensionless equations are obtained and solved numerically. The effect of the presence of the hot electrons in the sheath is examined. A significant change is observed in the quantities characterizing the sheath with respect to one species electrons (cold) assumption.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnas, C., Mikikian, M., Bachet, G., Doveil, F., Ma, J. X. & Yu, C. X. 2000 Phys. Plasmas 7, 4418.Google Scholar
Aslaninejad, M. & Yasserian, K. 2012 Phys. Plasmas 19, 033504.Google Scholar
Bailung, H., Boruah, D., Pal, A. R. & Chutia, J. 2004 Pramana-J. Phys. 62.CrossRefGoogle Scholar
Batishchev, O. V., et al. 1997 Phys. Plasmas 4, 1672.CrossRefGoogle Scholar
Bouchoule, A. 1999 Dusty Plasma: Physics, Chemistry and Technical Impact in Plasma Processing. New York: Wiley.Google Scholar
Cavenago, M. 2010 Rev. Sci Instrum. 81, 02B501.Google Scholar
Chutov, Yu. I., Kravchenko, O. Yu., Pshenychnyj, A. F., Smirnov, R. D., Asano, K., Ohno, N., Takamura, S. & Tomita, Y. 2003 Phys. Plasmas 10, 546.CrossRefGoogle Scholar
Djebli, M. & Marif, H. 2009 Phys. Lett. A 373, 2572.Google Scholar
Driouch, I. & Chatei, H. 2013 J. Appl. Fluid. Mech. 6, 511.Google Scholar
Driouch, I., Chatei, H. & Elkaouini, M. 2011a Int. Rev Physics. 5, 306.Google Scholar
Driouch, I., Chatei, H., Elkaouini, M., El Bojaddaini, M. & EL Hammouti, M. 2011b Phys. Chem News. 62, 50.Google Scholar
Foroutan, G. 2010 Phys. Plasmas 17, 123711.Google Scholar
Foroutan, G. & Akhoundi, A. 2012 Phys. Lett. A 376, 2444.Google Scholar
Kalita, P. & Das, G. C. 2003 J. Plasma Phys. 69, 551.Google Scholar
Khoramabadi, M., Ghomi, H. & Shukla, P. K. 2013 J. Plasma Phys. 79, 267.Google Scholar
Kravchenko, O. Yu., Chutov, Yu. I., Pshenychnyj, A. F., Smirnov, R. D. & Takamura, S. 2003 J. Nucl. Mater. 313–316, 1109.Google Scholar
Liu, J. Y., Wang, D. & MA, T. C. 2000 Vacuum. 59, 126.Google Scholar
Liu, J. Y., Zhang, Q., Zou, X. X. Wang, Z. & Gong, Y. 2004 Vacuum. 73, 687.CrossRefGoogle Scholar
Mahanta, M. K. & Goswami, K. S. 2001 Pramana-J. Phys. 56, 579.Google Scholar
Masoudi, S. F., Jafari, G. R. & Shorakaee, H. A. 2009 Vacuum. 83, 1031.CrossRefGoogle Scholar
Masoudi, S.F. & Taherparvar, P. 2010 J. Fusion Energy 29, 240.Google Scholar
Ming, Li., Vyvoda, M. A., Dew, S. K. L. & Brett, M. J. 2000. IEEE Trans. Plasma Sci. 28, 248.Google Scholar
Mizoshitaa, S., Shiraishib, K., Ohnoa, N. & Takamura, S. 1995 J. Nucl. Mater. 220, 488.CrossRefGoogle Scholar
Nitter, T. 1996 Plasma Source Sci. Technol. 5, 93.Google Scholar
Ou, J., Xiang, N., Gan, C. & Yang, J. 2013 Phys. Plasmas 20, 063502.CrossRefGoogle Scholar
Ping, D., Liu, G., Gong, Y., Liu, Y. & Xiaogang, W. 2007 Plasma. Sci. Technol. 9, 394.CrossRefGoogle Scholar
Riemann, K. U. 1995 IEEE Trans. Plasma Sci. 23, 709.Google Scholar
Sheridan, T. E., Goeckner, M. J. & Goree, J. 1991 J. Vac. Sci. Technol. 9, 688.Google Scholar
Shukla, P. K. & Mamum, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.Google Scholar
Song, S. B., Chang, C. S. & Choi, Duk-In. 1997 Phys. Rev E 55, 1213.Google Scholar
Stangeby, P. C. 1995 Plasma Phys. Control Fusion 37, 1031.Google Scholar
Wang, Z. X., Liu, J. Y., Liu, Y. & Wang, X. 2005 Phys. Plasmas 12, 012104.CrossRefGoogle Scholar
Wang, Z. X., Liu, Y., Ren, L. W., Liu, J. Y. & Liu, Y. 2006 Thin Solid Films 506–507, 637.Google Scholar
Xiu, Z. 2006 Chin. Phys Lett. 23, 396.Google Scholar
Yu, M. Y., Seleem, H. & Luo, H. 1992 Phys. Fluids B4, 3427.Google Scholar