Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T07:12:47.207Z Has data issue: false hasContentIssue false

A numerical study of strongly nonlinear plasma motion in a magnetic octupole field

Published online by Cambridge University Press:  13 March 2009

H. G. Eriksson
Affiliation:
Department of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden
C. Wahlberg
Affiliation:
Department of Technology, Uppsala University, Box 534, S-751 21 Uppsala, Sweden

Abstract

The strongly nonlinear axisymmetric motion of a z–pinch in an external magnetic octupole field is investigated numerically. A surface-current ideal-MHD approximation of the pinch is used, which allows a ‘contour-dynamics’ formulation of the problem. It is found that the plasma motion in the strongly nonlinear regime results in a collision between the plasma and one (or several) of the X-points. Thereafter, the X-point splits into two magnetic nulls (Y-points), which remain on the plasma surface and between which current reversal occurs. This phenomenon results in a strong force exerted on the outer parts of the plasma and directed towards the centre of the configuration. The force is able to stop the outward plasma motion under certain parameter conditions, which are found to be similar to those observed in experiments on the straight Extrap configuration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ågren, O. 1989 Plasma Phys. Contr. Fusion, 31, 35.CrossRefGoogle Scholar
Biddle, A. P., Dexter, R. N., Groebner, R. J., Holly, P. J., Lipschultz, B., Phillips, M. W., Prager, S. C. & Sprott, J. C. 1979 Nucl. Fusion, 9, 1509.CrossRefGoogle Scholar
Brebbia, C. A., Telles, J. C. F. & Wrobel, L. C. 1984 Boundary Element Techniques. Springer.CrossRefGoogle Scholar
Brynolf, J. 1985 Uppsala University Report UPTEC-8526R.Google Scholar
Brynolf, J., Ring, R. & Wahlberg, C. 1985 Plasma Phys. Contr. Fusion, 27, 1255.CrossRefGoogle Scholar
Dalhed, H.-E. & Hellsten, T. 1982 Proceedings of International Conference on Plasma Physics, Göteborg, Sweden, 9–15 June 1982, p. 361.Google Scholar
Deem, G. S. & Zabusky, N. J. 1978 Phys. Rev. Lett. 40, 859.CrossRefGoogle Scholar
Drake, J. R. 1984 Plasma Phys. Contr. Fusion, 26, 387.Google Scholar
Drake, J. R., Brunsell, P., Brzozowski, J., Eninger, J. E., Hedin, E. R., Karlsson, P., Lehnert, B., Jin, Li, Scheffel, J., Säterholm, H. E., Tennfors, E. & Wilner, B. 1988 Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of 12th International Conference, Nice, 1988, vol. 2, p. 751. IAEA, Vienna.Google Scholar
Drake, J. R., Brunsell, P., Eninger, J. E., Hedin, E. R., Jin, Li & Tennfors, E. 1987 Royal Institute of Technology, Stockholm, TRITA-PFU-87–12.Google Scholar
Drake, J. R., Eninger, J. E. & Lehnert, B. 1986 Proceedings of llth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto, Japan, 13–20 November 1986.Google Scholar
Drake, J. R., Hellsten, T., Landberg, R., Lehnert, B. & Wilner, B. 1981 Plasma Physics and Controlled Nuclear Fusion Research, Proceedings of 8th International Conference, Brussels, 1980, vol. 2, p. 717. IAEA, Vienna.CrossRefGoogle Scholar
Eriksson, G. 1987 Physica Scripta, 35, 851.CrossRefGoogle Scholar
Eriksson, G. 1988 Physica Scripta, 38, 374.CrossRefGoogle Scholar
Eriksson, H. G. 1988 b Physica Scripta, 37, 876.CrossRefGoogle Scholar
Eriksson, H. G. 1989 On the effect of passive feedback in the toroidal Extrap configuration. Uppsala University Report UPTEC-89078R (submitted to Physica Scripta), in press.Google Scholar
Eriksson, H. G. & Wahlberg, C. 1989 On the motion of a z-pinch in an inhomogeneous transverse magnetic field. Uppsala University Report UPTEC-89079R (submitted to Physica Scripta), in press.Google Scholar
Haas, F. A. & Papaloizou, J. C. B. 1977 Nucl. Fusion, 17, 721.CrossRefGoogle Scholar
Lehnert, B. 1974 Physica Scripta, 10, 139.CrossRefGoogle Scholar
Lehnert, B. 1980 Royal Institute of Technology, Stockholm, TRITA-PFU-80–10.Google Scholar
Lehnert, B. 1982 Unconventional Approaches to Fusion (ed. Brunelli, B. & Leotta, G. G.), p. 135. Plenum.CrossRefGoogle Scholar
Lehnert, B. 1983 Nucl. Iustrum. Meth. 207, 223.CrossRefGoogle Scholar
Lehnert, B. 1989 Fusion Technol. 16, 7.CrossRefGoogle Scholar
Lipschultz, B., Prager, S. C., Todd, A. M. M. & Delucia, J. 1980 Nucl. Fusion, 20, 683.CrossRefGoogle Scholar
Morozov, A. I. & Solov'ev, L. S. 1966 Revieivs of Plasma Physics (ed. Leontovich, M. A.), vol. 2, p. 94. Consultants Bureau.Google Scholar
Overman, E. A. & Zabusky, N. J. 1982 Phys. Fluids, 25, 1297.CrossRefGoogle Scholar
Ring, R. 1986 Uppsala University Report UPTEC-8613R.Google Scholar
Spies, G. 1989 Phys. Fluids, B 1, 398.CrossRefGoogle Scholar
Wahlberg, C. 1987 Contribution to 14th European Conference on Controlled Fusion and Plasma Physics, Madrid, Spain, 22–26 June 1987.Google Scholar
Wahlberg, C. 1988 Physica Scripta, 37, 105.CrossRefGoogle Scholar
Wardle, L. J. 1982 Numerical Solutions of Partial Differential Equations (ed. Noye, J.). North-Holland.Google Scholar