Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T07:47:47.107Z Has data issue: false hasContentIssue false

Numerical simulation of pulsed plasma sheath dynamics around a micro-sized tip

Published online by Cambridge University Press:  03 May 2013

H. GHOMI
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113, Iran (h-gmdashty@sbu.ac.ir)
A. MAHMOODPOOR
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113, Iran (h-gmdashty@sbu.ac.ir)
H. GOUDARZI
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113, Iran (h-gmdashty@sbu.ac.ir)
A. R. NIKNAM
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 19839-63113, Iran (h-gmdashty@sbu.ac.ir)

Abstract

In this paper the spatial and temporal evolution of pulsed plasma sheath around a micropatterned surface is investigated using two-dimensional fluid model. The simulation region is considered as a micro-sized tip with rectangular cross section. The effects of rise time on electric field, ion density distributions, and dose of ions impacting the target are studied. It is shown that the plasma sheath has a balloon-like behavior in the early time stages.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, M. S., Teo, K. B. K., Lacerda, R. G., Milne, W. I., Hash, D. B. and Meyyappan, M. 2006 Pure Appl. Chem. 78, 1117.CrossRefGoogle Scholar
Briehl, B. and Urbassek, H. M. 2002 J. Surf. Coat. Technol. 160, 259.CrossRefGoogle Scholar
Ghomi, H., Sharifian, M., Niknam, A. R. and Shokri, B. 2006 J. Appl. Phys. 100, 113301.CrossRefGoogle Scholar
Hatami, M. M., Niknam, A. R., Shokri, B. and Ghomi, H. 2008a Phys. Plasma 15, 053508.CrossRefGoogle Scholar
Hatami, M. M., Shokri, B. and Niknam, A. R. 2008b Phys. Plasma 15, 123501.CrossRefGoogle Scholar
Hatami, M. M., Niknam, A. R. and Shokri, B. 2009a Vacuum 83, 231.CrossRefGoogle Scholar
Hatami, M. M., Shokri, B. and Niknam, A. R. 2009b J. Appl. Phys. 42, 025204.Google Scholar
Khoramabadi, M., Ghomi, H. and Shukla, P. K. 2011 J. Appl. Phys. 109, 073307.CrossRefGoogle Scholar
Liebermann, M. A. and Lichtenberg, A. J. 1994 Principle of Plasma Discharges and Materials Processing. New York: Wiley.Google Scholar
Rssnagel, S. M. 1996 Handbook of Plasma Processing Technology: Fundamentals and Applications. Cambridge, UK: Cambrige University Press.Google Scholar
Scheuer, J. T., Shamim, M. and Conrad, J. R. 1990 J. Appl. Phys. 67, 1241.CrossRefGoogle Scholar
Self, S. A. 1963 Phys Fluids 6, 1762.CrossRefGoogle Scholar
Sheridan, T. E. 1994 Appl. Phys. Lett. 64, 1783.CrossRefGoogle Scholar
Sternberg, N. and Godyak, V. 2003 IEEE Trans. Plasma Sci. 31, 1395.CrossRefGoogle Scholar
Winder, M., Alexeff, I., Jones, W. D. and Lonngren, K. E. 1970 Phys. Fliuds 13, 2532.Google Scholar
Zou, X., Liu, J.-Y., Gong, Y., Wang, Z.-X., Liu, Y. and Wang, X.-G. 2004 Vacuum 73, 681.CrossRefGoogle Scholar