Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T22:23:48.319Z Has data issue: false hasContentIssue false

Nonthermal effects on the elastic electron–atom collision in generalized Lorentzian semiclassical plasmas: Lorentzian renormalization shielding

Published online by Cambridge University Press:  03 February 2015

Woo-Pyo Hong
Affiliation:
Department of Electronics Engineering, Catholic University of Daegu, Hayang, 712-702, South Korea
Young-Dae Jung*
Affiliation:
Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791, South Korea Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA
*
Email address for correspondence: ydjung@hanyang.ac.kr

Abstract

The Lorentzian renormalization plasma shielding effects on the elastic electron–atom collision are investigated in generalized Lorentzian semiclassical plasmas. The eikonal analysis and the effective interaction potential are employed to obtain the eikonal scattering phase shift, differential eikonal collision cross section, and total eikonal collision cross section as functions of the collision energy, impact parameter, nonthermal renormalization parameter, and spectral index of the Lorentzian plasma. It is found that the influence of Lorentzian renormalization shielding suppresses the eikonal scattering phase shift and, however, enhances the eikonal collision cross section in Lorentzian semiclassical plasmas. Additionally, the energy dependence on the total collision cross section in nonthermal plasmas is found to be more significant than that in thermal plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arkhipov, Yu. V., Baimbetov, F. B. and Davletov, A. E. 2005 Phys. Plasmas 12, 082 701.Google Scholar
Arkhipov, Yu. V., Baimbetov, F. B. and Davletov, A. E. 2011 Phys. Rev. E 83, 016 405.Google Scholar
Baimbetov, F. B., Nurekenov, Kh. T. and Ramazanov, T. S. 1995 Phys. Lett. A 202, 211.Google Scholar
Beyer, H. F. and Shevelko, V. P. 2003 Introduction to the Physics of Highly Charged Ions, Bristol: Institute of Physics, ch. 4.CrossRefGoogle Scholar
Binney, J. and Skinner, D. 2014 The Physics of Quantum Mechanics, Oxford: Oxford University Press, ch. 13.Google Scholar
Bransden, B. H. and Joachain, C. J. 2003 Physics of Atoms and Molecules, 2nd edn.Harlow: Prentice Hall, ch. 12.Google Scholar
Di Ventra, M. 2008 Electronic Transport in Nanoscale Systems, Cambridge: Cambridge University Press, ch. 2.Google Scholar
Dzhumagulova, K. N., Ramazanov, T. S. and Masheeva, R. U. 2013 Phys. Plasmas 20, 113 702.Google Scholar
Ghoshal, A. and Ho, Y. K. 2010 J. Phys. B 43, 045 203.Google Scholar
Ghoshal, A. and Ho, Y. K. 2011 Phys. Scr. 83, 065 301.Google Scholar
Hasegawa, A., Mima, K. and Duong-Van, M. 1985 Phys. Rev. Lett. 54, 2608.Google Scholar
Hasegawa, A. and Sato, T. 1989 Space Plasma Physics 1 Stationary Processes, Berlin: Springer, ch. 1.Google Scholar
Hong, W.-P. and Jung, Y.-D. 2012 Appl. Phys. Lett. 100, 074 104.Google Scholar
Joachain, C. J. 1983 Quantum Collision Theory, Amsterdam: North Holland, ch. 9.Google Scholar
Jung, Y.-D. 2014 Phys. Plasmas 21, sp.Google Scholar
Kim, S. S. and Jung, Y.-D. 2013 Phys. Plasmas 20, 062 104.Google Scholar
Li, H. W. and Kar, S. 2012 Eur. Phys. J. D 66, 304.Google Scholar
Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.Google Scholar
Melrose, D. 2008 Quantum Plasmadynamics, New York: Springer, chap 7.Google Scholar
Metawei, Z. 2000 Acta Phys. Polonica B 31, 713.Google Scholar
Omarbakiyeva, Y. A., Fortmann, C., Ramazanov, T. S. and Röpke, G. 2010 Phys. Rev. E 82, 026 407.Google Scholar
Pandey, M. K., Lin, Y.-C. and Ho, Y. K. 2012 Phys. Plasmas 19, 062 104.Google Scholar
Pandey, M. K., Lin, Y.-C. and Ho, Y. K. 2013 Phys. Plasmas 20, 022 104.Google Scholar
Ramazanov, T. S. and Dzhumagulova, K. N. 2002 Phys. Plasmas 9, 3758.Google Scholar
Ramazanov, T. S., Dzhumagulova, K. N. and Gabdullin, M. T. 2010 Phys. Plasmas 17, 042 703.CrossRefGoogle Scholar
Ramazanov, T. S., Dzhumagulova, K. N. and Omarbakiyeva, Y. A. 2005 Phys. Plasmas 12, 092 702.Google Scholar
Ramazanov, T. S. and Kodanova, S. K. 2001 Phys. Plasmas 8, 5049.Google Scholar
Ramazanov, T. S., Moldabekov, Zh. A., Dzhumagulova, K. N. and Muratov, M. M. 2011 Phys. Plasmas 18, 103 705.Google Scholar
Ramazanov, T. S. and Turekhanova, K. N. 2005 Phys. Plasmas 12, 102 502.Google Scholar
Rubab, N. and Murtaza, G. 2006a Phys. Scr. 73, 178.Google Scholar
Rubab, N. and Murtaza, G. 2006b Phys. Scr. 74, 145.CrossRefGoogle Scholar
Shevelko, V. P., Kato, D., Tawara, H. and Tolstikhina, I. Yu. 2010 Plasma Fusion Res. 5, S2012.Google Scholar
Shevelko, V. P., Tawara, H., Scheuermann, F., Fabian, B., Müller, A. and Salzborn, E. 2005 J. Phys. B 38, 525.Google Scholar
Shevelko, V. P. and Vainshtein, L. A. 1993 Atomic Physics for Hot Plasmas, Bristol: Institute of Physics, chap. 4.Google Scholar
Shukla, P. K. and Eliasson, B. 2007 Phys. Lett. A 372, 2897.Google Scholar