Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:44:05.973Z Has data issue: false hasContentIssue false

Non-resonant acceleration of charged particles driven by the associated effects of the radiation reaction

Published online by Cambridge University Press:  20 October 2020

F. Russman*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970Porto Alegre, RS, Brasil
I. Almansa*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970Porto Alegre, RS, Brasil
E. Peter*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970Porto Alegre, RS, Brasil
S. Marini*
Affiliation:
Laboratoire des Solides Irradiés, École Polytechnique, Institut Polytechnique de Paris, CNRS, CEA/DRF/IRAMIS, 91128Palaiseau, France
F. B. Rizzato*
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970Porto Alegre, RS, Brasil

Abstract

In the present analysis, we study effects of the radiation reaction (RR) on the dynamics of charged particles submitted to the action of localized longitudinal high-frequency carriers travelling at the speed of light. As the wave's crests and troughs keep overtaking particles, dissipative RR forces tend to drag particles alongside the wave in an effort to reduce the relative wave–particle speed. Particles of course never reach the phase velocity of the wave, but are instead driven to an ever-growing velocity, towards the speed of light, while in the wave localization region. We developed a modified average Hamiltonian formalism capable of describing the intricacies of the corresponding dynamics. The modified formalism agrees with simulations and is of particular usefulness in the study of optimum values for the localization length and maximum wave amplitude.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almansa, I., Russman, F. B., Marini, S., Peter, E., de Oliveira, G. I., Cairns, R. A. & Rizzato, F. B. 2019 Ponderomotive and resonant effects in the acceleration of particles by electromagnetic modes. Phys. Plasmas 26 (3), 033105.CrossRefGoogle Scholar
Bingham, R. 2003 In the wake of success. Nature 424 (6946), 258259.CrossRefGoogle Scholar
Burton, D. A., Cairns, R. A., Ersfeld, B., Noble, A., Yoffe, S. & Jaroszynski, D. A. 2017 Observations on the ponderomotive force. In Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources II (ed. Jaroszynski, Dino A.). International Society for Optics and Photonics.Google Scholar
Burton, D. A. & Noble, A. 2014 Aspects of electromagnetic radiation reaction in strong fields. Contemp. Phys. 55 (2), 110121.CrossRefGoogle Scholar
Esarey, E., Schroeder, C. B. & Leemans, W. P. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81 (3), 1229.CrossRefGoogle Scholar
Fedeli, L., Sgattoni, A., Cantono, G., Garzella, D., Réau, F., Prencipe, I., Passoni, M., Raynaud, M., Květoň, M., Proska, J., et al. 2016 Electron acceleration by relativistic surface plasmons in laser-grating interaction. Phys. Rev. Lett. 116 (1), 015001.CrossRefGoogle ScholarPubMed
Goldstein, H. 1980 Classical Mechanics. Addison-Wesley.Google Scholar
Harvey, C., Heinzl, T. & Marklund, M. 2011 Symmetry breaking from radiation reaction in ultra-intense laser fields. Phys. Rev. D 84, 116005.CrossRefGoogle Scholar
Kim, H. T., Pathak, V. B., Pae, K. H., Lifschitz, A., Sylla, F., Shin, J. H., Hojbota, C., Lee, S. K., Sung, J. H., Lee, H. W., et al. 2017 Stable multi-GeV electron accelerator driven by waveform-controlled PW laser pulses. Sci. Rep. 7 (1), 18.Google ScholarPubMed
Landau, L. & Lifschitz, E. 1965 Théorie du champ. Mir.Google Scholar
Landau, L. & Lifschitz, E. 1969 Méchanique. Mir.Google Scholar
Macchi, A. 1992 A Superintense Laser-Plasma Interaction Theory Primer. Springer.Google Scholar
Marini, S., Peter, E., de Oliveira, G. I. & Rizzato, F. B. 2017 Breakdown of the ponderomotive approximation as an acceleration mechanism in wave-particle nonlinear dynamics. Phys. Plasmas 24 (9), 093113.CrossRefGoogle Scholar
McNeil, B. W. J. & Thompson, N. R. 2010 X-ray free-electron lasers. Nat. Photonics 4 (12), 814821.CrossRefGoogle Scholar
Mulser, P. & Bauer, D. 2010 High Power Laser-Matter Interaction. Springer.CrossRefGoogle Scholar
Papadopoulos, D. N., Zou, J. P., Le Blanc, C., Chériaux, G., Georges, P., Druon, F., Mennerat, G., Ramirez, P., Martin, L., Fréneaux, A., et al. 2016 The Apollon 10 PW laser: experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Engng 4, e34.CrossRefGoogle Scholar
Piazza, A. D. 2008 Exact solution of the Landau–Lifshitz equation in a plane wave. Lett. Math. Phys. 83 (3), 305313.CrossRefGoogle Scholar
Raynaud, M., Kupersztych, J., Riconda, C., Adam, J. C. & Heron, A. 2007 Strongly enhanced laser absorption and electron acceleration via resonant excitation of surface plasma waves. Phys. Plasmas 14 (9), 092702.CrossRefGoogle Scholar
Ruiz, D. E. & Dodin, I. Y. 2017 Ponderomotive dynamics of waves in quasiperiodically modulated media. Phys. Rev. A 95 (3), 032114.CrossRefGoogle Scholar
Shukla, P. K., Rao, N. N., Yu, M. Y. & Tsintsadze, N. L. 1986 Relativistic nonlinear effects in plasmas. Phys. Rep. 138 (1–2), 1149.CrossRefGoogle Scholar
Smorenburg, P. W., Kamp, L. P. J., Geloni, G. A. & Luiten, O. J. 2010 Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches. Laser Part. Beams 28 (4), 553.CrossRefGoogle Scholar
Tajima, T. & Dawson, J. M. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267.CrossRefGoogle Scholar
Vranic, M., Martins, J. L., Vieira, J., Fonseca, R. A. & Silva, L. O. 2014 All-optical radiation reaction at $10^{21}\ \textrm {w}/\textrm {cm}^{2}$. Phys. Rev. Lett. 113, 134801.CrossRefGoogle Scholar
Wang, X., Zgadzaj, R., Yi, S. A., Khudik, V., Henderson, W., Fazel, N., Chang, Y.-Y., Korzekwa, R., Tsai, H.-E., Pai, C.-H., et al. 2012 Self-injected petawatt laser-driven plasma electron acceleration in $10^{17}\ \textrm {cm}^{-3}$ plasma. J. Plasma Phys. 78 (4), 413419.CrossRefGoogle Scholar
Welsh, G. H., Wiggins, S. M., Issac, R. C., Brunetti, E., Manahan, G. G., Islam, M. R., Cipiccia, S., Aniculaesei, C., Ersfeld, B., Jaroszynski, D. A., et al. 2012 High resolution electron beam measurements on the alpha-x laser–plasma wakefield accelerator. J. Plasma Phys. 78 (4), 393399.CrossRefGoogle Scholar
Zhang, X., Khudik, V. N. & Shvets, G. 2015 Synergistic laser-wakefield and direct-laser acceleration in the plasma-bubble regime. Phys. Rev. Lett. 114 (18), 184801.CrossRefGoogle ScholarPubMed
Zhang, X., Tajima, T., Farinella, D., Shin, Y., Mourou, G., Wheeler, J., Taborek, P., Chen, P., Dollar, F. & Shen, B. 2016 Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes. Phys. Rev. Accel. Beams 19, 101004.CrossRefGoogle Scholar