Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T14:12:44.907Z Has data issue: false hasContentIssue false

Nonlinear dynamics of ion acoustic waves in quantum pair-ion plasmas

Published online by Cambridge University Press:  13 July 2015

Biswajit Sahu*
Affiliation:
Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126, India
Barnali Pal
Affiliation:
Department of Applied Mathematics, University of Calcutta, Kolkata-700009, India
Swarup Poria
Affiliation:
Department of Applied Mathematics, University of Calcutta, Kolkata-700009, India
Rajkumar Roychoudhury
Affiliation:
Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata-700075, India
*
Email address for correspondence: biswajit_sahu@yahoo.co.in

Abstract

The nonlinear properties of the ion acoustic waves (IAWs) in a three-component quantum plasma comprising electrons, and positive and negative ions are investigated analytically and numerically by employing the quantum hydrodynamic (QHD) model. The Sagdeev pseudopotential technique is applied to obtain the small-amplitude soliton solution. The effects of the quantum parameter $H$ , positive to negative ion density ratio ${\it\beta}$ and Mach number on the nonlinear structures are investigated. It is found that these factors can significantly modify the properties of the IAWs. The existence of quasi-periodic and chaotic oscillations in the system is established. Switching from quasi-periodic to chaotic is possible with the variation of Mach number or quantum parameter $H$ .

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelsalam, U. M. 2010 Dust-ion-acoustic solitary waves in a dense pair-ion plasma. Physica B 405, 39143918.Google Scholar
Ali, S., Moslem, W. M., Shukla, P. K. & Schlickeiser, R. 2007 Linear and nonlinear ion-acoustic waves in an unmagnetized electron–positron–ion quantum plasma. Phys. Plasmas 14, 082307.Google Scholar
Ali, S. & Shukla, P. K. 2007 Streaming instability in quantum dusty plasmas. Eur. Phys. J. D 41, 319324.Google Scholar
Alligood, K. T., Sauer, T. D. & Yorke, J. A. 1996 Chaos: An Introduction to Dynamical Systems. Springer.Google Scholar
Ang, L. K. & Zhang, P. 2007 Ultrashort-pulse child-langmuir law in the quantum and relativistic regimes. Phys. Rev. Lett. 98, 164802.Google Scholar
Arshad, K. & Mahmood, S. 2010 Electrostatic ion waves in non-Maxwellian pair-ion plasmas. Phys. Plasmas 17, 124501.Google Scholar
Bohm, D. & Pines, D. 1953 A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev. 92, 609.Google Scholar
Brodin, G. & Marklund, M. 2007 Spin solitons in magnetized pair plasmas. Phys. Plasmas 14, 112107.Google Scholar
Brodin, G., Marklund, M. & Manfredi, G. 2008 Quantum plasma effects in the classical regime. Phys. Rev. Lett. 100, 175001.Google Scholar
Chatterjee, P., Ghorui, M. K. & Wong, C. S. 2011 Head on collision of dust ion acoustic soliton in quantum pair ion plasma. Phys. Plasmas 18, 103710.Google Scholar
Cooney, I. L., Gavin, M. T., Tao, I. & Lonngren, K. E. 1991 A two-dimensional soliton in a positive ion-negative ion plasma. IEEE Trans. Plasma Sci. 19, 1259.Google Scholar
Deng, R., Clegg, A. & Echt, O. 2003 Mass spectrometric study of $\text{K}^{+}+\text{C}_{60}$ collisions. Intl J. Mass. Spectrom. 223, 695701.Google Scholar
Glenzer, S. H., Gregori, G., Lee, R. W., Rogers, F. J., Pollaine, S. W. & Landen, O. L. 2003 Demonstration of spectrally resolved x-ray scattering in dense plasmas. Phys. Rev. Lett. 90, 175002.Google Scholar
Glenzer, S. H. & Redmer, R. 2009 X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 81, 1625.Google Scholar
Hass, F., Garcia, L. G., Goedert, J. & Manfredi, G. 2003 Quantum ion-acoustic waves. Phys. Plasmas 10, 38583866.Google Scholar
Haas, F., Manfredi, G. & Feix, M. R. 2000 Multistream model for quantum plasmas. Phys. Rev. E 62, 2763.Google Scholar
Iqbal, M. 2013 Linear wave theory in magnetized quantum plasmas. J. Plasma Phys. 79, 1923.Google Scholar
Kourakis, I. & Saini, N. S. 2010 Low-frequency electrostatic defect mode in doped pair-ion plasmas. J. Plasma Phys. 76, 607616.Google Scholar
Leontovich, M. 1994 Izv. Akad. Nauk Arm. SSR, Fiz. 8, 16.Google Scholar
Levine, P. & Roos, O. V. 1962 Plasma theory of the many-electron atom. Phys. Rev. 125, 207213.Google Scholar
Luque, A., Schamel, H., Eliasson, B. & Shukla, P. K. 2005 Nonlinear instability and saturation of linearly stable current-carrying pair plasmas. Phys. Plasmas 12, 122307.Google Scholar
Mahajan, S. M. & Shatashvili, N. L. 2008 Wave localization and density bunching in pair ion plasmas. Phys. Plasmas 15, 100701.Google Scholar
Mahajan, S. M., Shatashvili, N. L. & Berezhiani, V. I. 2009 Asymmetry-driven structure formation in pair plasmas. Phys. Rev. E 80, 066404.Google Scholar
Malekolkalami, B. & Mohammadi, T. 2012 Propagation of solitary waves and shock wavelength in the pair plasma. J. Plasma Phys. 78, 525529.Google Scholar
Manfredi, G. & Hass, F. 2001 Self-consistent fluid model for a quantum electron gas. Phys. Rev. B 64, 075316.Google Scholar
Markowich, P. A., Ringhofer, C. A. & Schmeiser, C. 1990 Semiconductor Equations. Springer.Google Scholar
Misra, A. P. 2009 Dust ion-acoustic shocks in quantum dusty pair-ion plasmas. Phys. Plasmas 16, 033702.Google Scholar
Mushtaq, A. & Vladimirov, S. 2011 Arbitrary magnetosonic solitary waves in spin 1/2 degenerate quantum plasma. Eur. Phys. J. D 64, 419426.Google Scholar
Nakamura, Y. & Tsukabayashi, I. 1984 Observation of modified Korteweg–de Vries solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 52, 2356.Google Scholar
Nakamura, Y., Tsukabayashi, I., Ludwig, G. O. & Ferreira, J. L. 1985 Large amplitude solitary waves in a multicomponent plasma with negative ions. Phys. Lett. A 113, 155158.Google Scholar
Oohara, W., Date, D. & Hatakeyama, R. 2005 Electrostatic waves in a paired fullerene-ion plasma. Phys. Rev. Lett. 95, 175003.Google Scholar
Oohara, W. & Hatakeyama, R. 2003 Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91, 205005.Google Scholar
Oohara, W. & Hatakeyama, R. 2007 Basic studies of the generation and collective motion of pair-ion plasmas. Phys. Plasmas 14, 055704.Google Scholar
Rasheed, A., Tsintsadze, N. L. & Murtaza, G. 2011 Ion-acoustic solitary waves in ultra-relativistic degenerate pair-ion plasmas. Phys. Plasmas 18, 112701.Google Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23.Google Scholar
Schamel, H. & Luque, A. 2005 Kinetic theory of periodic hole and double layer equilibria in pair plasmas. New J. Phys. 7, 69.Google Scholar
Shaikh, D. & Shukla, P. K. 2008 3D electron fluid turbulence at nanoscales in dense plasmas. New J. Phys. 10, 083007.Google Scholar
Shpatakovskaya, G. V. 2006 Semiclassical model of a one-dimensional quantum dot. J. Expl Theor. Phys. 102, 466474.Google Scholar
Shukla, P. K. & Stenflo, L. 2005 Periodic structures on an ionic-plasma-vacuum interface. Phys. Plasmas 12, 044503.Google Scholar
Silva, L. O., Bingham, R., Dawson, J. M., Mendonca, J. T. & Shukla, P. K. 1999 Neutrino driven streaming instabilities in a dense plasma. Phys. Rev. Lett. 83, 2703.Google Scholar
Vladimirov, S. V., Ostrikov, K., Yu, M. Y. & Morfill, G. E. 2003 Ion-acoustic waves in a complex plasma with negative ions. Phys. Rev. E 67, 036406.Google Scholar
Tribeche, M., Gougam, L. A., Boubakour, N. & Zerguini, T. H. 2007 Electrostatic solitary structures in a charge-varying pair–ion–dust plasma. J. Plasma Phys. 73, 403415.Google Scholar
Vranjes, J., Petrovic, D., Pandey, B. P. & Poedts, S. 2008 Electrostatic modes in multi-ion and pair-ion collisional plasmas. Phys. Plasmas 15, 072104.Google Scholar
Vranjes, J. & Poedts, S. 2005 On waves and instabilities in pair-ion plasma. Plas. Sources Sci. Tech. 14, 485.Google Scholar