Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:41:58.038Z Has data issue: false hasContentIssue false

Modulational instability of obliquely modulated ion-acoustic waves in a collisional plasma with one- and two-electron-temperature distributions

Published online by Cambridge University Press:  13 March 2009

M. K. Mishra
Affiliation:
Department of Physics, University of Rajasthan, Jaipur-302004, India
R. S. Chhabra
Affiliation:
Department of Physics, University of Rajasthan, Jaipur-302004, India
S. R. Sharma
Affiliation:
Department of Physics, University of Rajasthan, Jaipur-302004, India

Abstract

The stability of oblique modulation of ion-acoustic waves in a collisional plasma with one and two electron-temperature distributions is studied using the KBM method. For the case of one electron distribution it is found that collisions give rise to regions of physical instability that are otherwise stable in the absence of collisions. For the two-electron-distribution case in the presence of collisions the domains of physical instability of the wave are studied with respect to the values of the temperature ratio and relative concentration of the two electron species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bogoliubov, N. N. & Mitropolosky, Y. A. 1961 Asymptotic Methods in the Theory of Nonlinear Oscillations, chap. 1. Hindustan Publishing.Google Scholar
Buti, B. 1976 IEEE Trans. Plasma Sci. 4, 292.CrossRefGoogle Scholar
Buti, B. 1980 Phys. Lett. 76 A, 251.Google Scholar
Chhabra, R. S. & Sharma, S. R. 1986 J. Plasma Phys. 35, 505.CrossRefGoogle Scholar
Dash, S. S. & Buti, B. 1981 Phys. Lett. 81 A, 347.Google Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D. & Gary, S. P. 1975 J. Geophys.Res. 80, 4181.Google Scholar
Goswami, B. N. & Buti, B. 1976 Phys. Lett. 57 A, 149.CrossRefGoogle Scholar
Ichikawa, Y. H., Imamira, T. & Taniuti, T. 1972 J. Phys. Soc. Jpn, 33, 189.Google Scholar
Ichikawa, Y. H. & Taniuti, T. 1973 J. Phys. Soc. Jpn, 34, 513.Google Scholar
Ichikawa, Y. H. & Watanabe, S. 1977 Nagoya University Research Report IPPJ-298.Google Scholar
Ikezi, H., Schwarzenegger, K., Simsons, A. L., Ohsawa, Y. & Kamimura, T. 1978 Phys. Fluids, 21, 239.Google Scholar
Jones, W. D., Lee, A., Gleman, S. M. & Doucet, H. J. 1975 Phys. Rev. Lett. 35, 1349.CrossRefGoogle Scholar
Kako, M. 1974 Prog. Theor. Phys. Suppl. 55, 120.Google Scholar
Kakutani, T. & Sugimoto, N. 1974 Phys. Fluids, 17, 1617.Google Scholar
Oleson, N. L. & Found, C. G. 1949 J. Appl. Phys. 20, 416.Google Scholar
Saxena, M. K., Arora, A. K. & Sharma, S. R. 1981 Plasma Phys. 23, 491.Google Scholar
Schimizu, K. & Ichikawa, Y. H. 1972 J. Phys. Soc. Jpn, 33, 789.Google Scholar
Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 1369.Google Scholar
Tiwari, R. S. & Sharma, S. R. 1980 Phys. Lett. 77 A, 30.CrossRefGoogle Scholar
Watanabe, S. 1977 J. Plasma Phys. 17, 487.Google Scholar
Yashvir, , Bhatnagar, T. N. & Sharma, S. R. 1985 J. Plasma Phys. 33, 209.Google Scholar