Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:33:27.870Z Has data issue: false hasContentIssue false

Modelling of a solar coronal loop

Published online by Cambridge University Press:  13 March 2009

V. Krishan
Affiliation:
Indian Insitute of Astrophysics, Bangalore 560 034, India

Abstract

Montgomery and co-workers have developed a framework to describe the steady state of a turbulent magnetofluid, without the usual recourse to linearization. Thus the magnetic and velocity fields emerge in their fully nonlinear form as a consequence of the selective decays of the invariants of the system. Using this statistical theory of magnetohydrodynamic turbulence, the pressure, magnetic and flow fields of a solar coronal loop have been determined. The spatial and time profiles of the loop pressure are derived. A comparison with the observed properties of the loops is made, whenever possible.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Aschwanden, M. J. 1987 Solar Phys. 111, 112.CrossRefGoogle Scholar
Bray, R. J., Cram, L. E., Durrant, C. J. and Loughhead, R. E. 1991 Plasma Loops in the Solar Corona. Cambridge University Press.CrossRefGoogle Scholar
Browning, P. K. and Priest, E. R. 1986 Astron. Astrophys. 159, 129.Google Scholar
Cargill, P. J. and Priest, E. R. 1980 Solar Phys. 65, 251.CrossRefGoogle Scholar
Chen, H.Shan, X. and Montgomery, D. 1990 Phys. Rev. A42, 6158.CrossRefGoogle Scholar
Craig, I. J. D., Mcllymont, A.N. and Underwood, J.H. 1978 Astron. Astrophys. 70. 1.Google Scholar
Dahlburg, J. P.Montgomery, D., Doolen, G. D. and Turner, L. 1986 Phys. Rev. Lett. 57, 428.CrossRefGoogle Scholar
Dahlburg, J. P.Montgomery, D., Doolen, G. D. and Turner, L. 1987 J. Plasma Phys. 37, 299.CrossRefGoogle Scholar
Dahlburg, J. P., Montgomery, D., Doolen, G. D. and Turner, L. 1988, J. Plasma Phys. 40, 39.CrossRefGoogle Scholar
Foukal, P. 1978 Astrophys. 223, 1046.CrossRefGoogle Scholar
Glencross, W. M. 1980, Astron. Astrophys. 83, 65.Google Scholar
Heyvaerts, J. and Priest, E. R. 1984 Astron. Astrophys. 137, 63.Google Scholar
Kleczek, J. 1963 Bull. Astron. Inst. Czechoslovakia 14, 167.Google Scholar
Krishan, V. 1983 Solar Phys. 88, 155.CrossRefGoogle Scholar
Krishan, V. 1985 Solar Phys. 97, 183.CrossRefGoogle Scholar
Landini, M. and Monsignori, Fossi B. C. 1981 Astron. Astrophys. 102, 391.Google Scholar
Levine, R. K. and Withbroe, G. L. 1977 Solar Phys. 51, 83.CrossRefGoogle Scholar
Martens, P. C. H. and Kuin, N. P. M. 1982 Astron. Astrophys. 40, 63.Google Scholar
Montgomery, D., Turner, L. and Vahala, G. 1978, Phys. Fluids 21, 757.CrossRefGoogle Scholar
Montgomery, D., Phillips, L. and Theobald, M. L. 1989 Phys. Rev. A40, 1515.CrossRefGoogle Scholar
Noci, G. 1981 Solar Phys. 69, 63.CrossRefGoogle Scholar
Roberts, B., Edwin, P. M. and Benz, A. O. 1984 Astrophys. J. 279, 857.CrossRefGoogle Scholar
Rosner, R., Golub, L., Coppi, B. and Viana, G. S. 1978 Astrophys. J. 222, 317.CrossRefGoogle Scholar
Sasidharan, K., Sreedharan, T. D., Pratap, R. and Krishan, V. 1995 Solar Phys. 157, 121.CrossRefGoogle Scholar
Shan, X., Montgomery, D. and Chen, H. 1991 Phys. Rev. A44, 680.CrossRefGoogle Scholar
Sreedharan, T. D., Sasidharan, K., Satyanarayanan, A. and Krishan, V. 1992 Solar Phys. 142, 249.CrossRefGoogle Scholar
Svestka, Z. 1994 Solar Phys. 152, 505.CrossRefGoogle Scholar
Theobald, M. L., Montgomery, D., Doolen, G. D. and Dahlburg, J. P. 1989 Phys. Fluids B1 766.CrossRefGoogle Scholar
Vrsnak, B. 1984 Solar Phys. 94, 289.CrossRefGoogle Scholar