Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T03:34:49.309Z Has data issue: false hasContentIssue false

Merging of the superbanana plateau and $\sqrt \nu$ transport regimes in nearly quasisymmetric stellarators

Published online by Cambridge University Press:  19 January 2023

Peter J. Catto*
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Elizabeth A. Tolman
Affiliation:
Institute for Advanced Study, Princeton, NJ 08540, USA Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
Felix I. Parra
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08540, USA
*
Email address for correspondence: catto@psfc.mit.edu

Abstract

Alpha particle confinement is one of the most demanding issues for stellarators. It now seems clear that it is possible to design optimized stellarators that confine the background plasma at near tokamak radial transport levels. Moreover, adequate collisionless alpha particle confinement is possible in the core of a highly optimized stellarator. Here, the collisional confinement of barely trapped alphas in an optimized stellarator is considered by accounting for the resonance due to the reversal in direction of the drift within a flux surface and investigating the sensitive role of magnetic shear in keeping this resonance close to the passing boundary in some nearly quasisymmetric stellarator configurations. The treatment relies on a narrow collisional boundary layer formulation that combines the responses of both these resonant pitch angle alphas and the remaining barely trapped alphas. A novel merged regime treatment leads to explicit expressions for the energy diffusivity for both superbanana plateau (or resonant plateau) and $\sqrt \nu$ transport in the large aspect ratio limit for a slowing down tail alpha distribution function, where $\nu$ is the effective pitch angle scattering collision frequency of the trapped alphas off the background ions. Depending on the details of the optimization scheme and the sign of the magnetic shear, modest magnetic shear can be used to reduce superbanana (or resonant) plateau transport to below the $\sqrt \nu$ transport level. In addition, a quasilinear equation retaining spatial diffusion is derived for a general alpha distribution function that allows the radial alpha transport to modify the distribution so it is no longer isotropic in velocity space.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I.A. 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th printing, pp. 446–449. National Bureau of Standards.Google Scholar
Bader, A., Drevlak, M., Anderson, D.T., Faber, B.J., Hegna, C.C., Likin, K.M., Schmitt, J.C. & Talmadge, J.N. 2019 Stellarator equilibria with reactor relevant energetic particle losses. J. Plasma Phys. 85, 905850508; 18pp.CrossRefGoogle Scholar
Beidler, C.D., Allmaier, K., Isaev, M.Y., Kaslov, S.V., Kernbichler, W., Leitold, G.O., Maaβberg, H., Mikkelsen, D.R., Murakami, S., Schmidt, M., Spong, D.A., Tribaldos, V. & Wakasa, A. 2011 Benchmarking of the mono-energetic transport coefficients - results from the International Collaboration on Neoclassical Transport in Stellarators (ICNTS). Nucl. Fusion 51, 076001; 28pp.10.1088/0029-5515/51/7/076001CrossRefGoogle Scholar
Beidler, C.D. & D'haeseleer, W.D. 1995 A general solution of the ripple-averaged kinetic equation (GSRAKE). Plasma Phys. Control. Fusion 37, 463490.10.1088/0741-3335/37/4/007CrossRefGoogle Scholar
Boozer, A.H. 1981 Plasma equilibrium with rational magnetic surfaces. Phys. Fluids 24, 19992003.10.1063/1.863297CrossRefGoogle Scholar
Boozer, A.H. 1983 Transport and isomorphic equilibria. Phys. Fluids 26, 496499.CrossRefGoogle Scholar
Boozer, A.H. 1995 Quasi-helical symmetry in stellarators. Plasma Phys. Control. Fusion 37, A103A117.10.1088/0741-3335/37/11A/007CrossRefGoogle Scholar
Calvo, I., Parra, F.I., Alonso, J.A. & Velasco, J.L. 2014 a Optimizing stellarators for large flows. Plasma Phys. Control. Fusion 56, 094003; 11pp.CrossRefGoogle Scholar
Calvo, I., Parra, F.I., Velasco, J.L. & Alonso, J.A. 2013 Stellarators close to quasisymmetry. Plasma Phys. Control. Fusion 55, 125014; 28pp.10.1088/0741-3335/55/12/125014CrossRefGoogle Scholar
Calvo, I., Parra, F.I., Velasco, J.L. & Alonso, J.A. 2014 b Flow damping in stellarators close to quasisymmetry. Plasma Phys. Control. Fusion 57, 014014; 7pp.Google Scholar
Calvo, I., Parra, F.I., Velasco, J.L. & Alonso, J.A. 2017 The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity. Plasma Phys. Control. Fusion 59, 055014; 19pp.CrossRefGoogle Scholar
Cary, J.R. & Shasharina, S.G. 1997 a Helical plasma confinement devices with good confinement properties. Phys. Rev. Lett. 78, 674677.CrossRefGoogle Scholar
Cary, J.R. & Shasharina, S.G. 1997 b Omnigeneity and quasihelicity in helical plasma confinement systems. Phys. Plasmas 4, 33233333.10.1063/1.872473CrossRefGoogle Scholar
Catto, P.J. 2018 Ripple modifications to alpha transport in tokamaks. J. Plasma Phys. 84, 905840508; 39pp.CrossRefGoogle Scholar
Catto, P.J. 2019 a Collisional alpha transport in a weakly rippled magnetic field. J. Plasma Phys. 85, 905850203; 16pp.Google Scholar
Catto, P.J. 2019 b Collisional alpha transport in a weakly non-quasisymmetric stellarator magnetic field. J. Plasma Phys. 85, 905850213; 20pp & 945850501; 1p.Google Scholar
Catto, P.J. & Tolman, E.A. 2021 Collisional broadening of nonlinear resonant wave-particle interactions. J. Plasma Phys. 87, 905870606; 15pp.CrossRefGoogle Scholar
D'herbemont, V., Parra, F.I., Calvo, I. & Velasco, J.L. 2022 Finite orbit width effects in large aspect ratio stellarators. J. Plasma Phys. 88, 905880507; 80pp.10.1017/S0022377822000897CrossRefGoogle Scholar
Galeev, A.A., Sagdeev, R.Z., Furth, H.P. & Rosenbluth, M.N. 1969 Plasma diffusion in a toroidal stellarator. Phys. Rev. Lett. 22, 511514.CrossRefGoogle Scholar
Garren, D.A. & Boozer, A.H. 1991 a Magnetic field strength of toroidal plasma equilibria. Phys. Fluids B 3, 28052821.10.1063/1.859915CrossRefGoogle Scholar
Garren, D.A. & Boozer, A.H. 1991 b Existence of quasihelically symmetric stellarators. Phys. Fluids B 3, 28222834.CrossRefGoogle Scholar
Gates, D.A., Boozer, A.H., Brown, T., Breslau, J., Curreli, D., Landreman, M., Lazerson, S.A., Lore, J., Mynick, H., Neilson, G.H., Pomphrey, N., Xanthopoulos, P. & Zolfaghari, A. 2017 Recent advances in stellarator optimization. Nucl. Fusion 57, 126064: 9pp.10.1088/1741-4326/aa8ba0CrossRefGoogle Scholar
Hazeltine, R.D. & Catto, P.J. 1981 Bumpy torus transport in the low collision frequency limit. Phys. Fluids 24, 290306.CrossRefGoogle Scholar
Henneberg, S.A., Drevlak, M., Nührenberg, C., Beidler, C.D., Turkin, Y., Loizu, J. & Helander, P. 2019 Properties of a new quasi-axisymmetric configuration. Nucl. Fusion 59, 026014; 11pp.10.1088/1741-4326/aaf604CrossRefGoogle Scholar
Ho, D.D.-M. & Kulsrud, R.M. 1987 Neoclassical transport in stellarators. Phys. Fluids 30, 442461.CrossRefGoogle Scholar
Hsu, C.T., Catto, P.J. & Sigmar, D.J. 1990 Neoclassical transport of isotropic fast ions. Phys. Fluids B 2, 280; 11pp.CrossRefGoogle Scholar
Landreman, M. 2019 Optimized quasi-symmetric stellarators are consistnt with the Garren-Boozer construction. Plasma Phys. Control. Fusion 61, 075001; 8pp.CrossRefGoogle Scholar
Landreman, M. & Catto, P.J. 2011 Effects of the radial electric field in a quasisymmetric stellarator. Plasma Phys. Control. Fusion 53, 015004; 28pp.10.1088/0741-3335/53/1/015004CrossRefGoogle Scholar
Landreman, M. & Paul, E. 2022 Magnetic fields with precise quasisymmetry for plasma confinement. Phys. Rev. Lett. 128, 035001-6.CrossRefGoogle ScholarPubMed
Landreman, M. & Sengupta, W. 2018 Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates. J. Plasma Phys. 84, 905840616; 22pp.CrossRefGoogle Scholar
Landreman, M. & Sengupta, W. 2019 Constructing stellarators with quasisymmetry to high order. J. Plasma Phys. 85, 815850601; 43pp.CrossRefGoogle Scholar
Landreman, M., Sengupta, W. & Plunk, G. 2019 Direct construction of optimized stellarator shapes. Part 2. Numerical quasisymmetric solutions. J. Plasma Phys. 85, 905850103; 22pp.10.1017/S0022377818001344CrossRefGoogle Scholar
Nührenberg, J. & Zille, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129, 113117.CrossRefGoogle Scholar
Parra, F.I., Calvo, I., Helander, P. & Landreman, M. 2015 Less constrained omnigeneous stellarators. Nucl. Fusion 55, 033005; 5pp.CrossRefGoogle Scholar
Parra, F.I. & Catto, P.J. 2008 Limitations of gyrokinetics on transport time scales. Plasma Phys. Control. Fusion 50, 065014; 23pp.CrossRefGoogle Scholar
Plunk, G., Landreman, M., Sengupta, W. & Helander, P. 2019 Direct construction of optimized stellarator shapes. Part 3. Omnigenity near the magnetic axis. J. Plasma Phys. 85, 905850602; 24pp.CrossRefGoogle Scholar
Pytte, A. & Boozer, A.H. 1981 Neoclassical transport in helically symmetric plasmas. Phys. Fluids 24, 8892.CrossRefGoogle Scholar
Shaing, K.C. 2015 Superbanana and superbanana plateau transport in finite aspect ratio tokamaks with broken symmetry. J. Plasma Phys. 81, 905810203; 12pp.CrossRefGoogle Scholar
Shaing, K.C., Sabbagh, S.A. & Chu, M.S. 2009 Neoclassical toroidal plasma viscosity in the superbanana plateau for tokamaks. Plasma Phys. Control. Fusion 51, 035009; 9pp.Google Scholar
Su, C.H. & Oberman, C. 1968 Collisional damping of a plasma echo. Phys. Rev. Lett. 20, 427429.CrossRefGoogle Scholar
Tolman, E.A. & Catto, P.J. 2021 Drift kinetic theory of alpha transport by tokamak perturbations. J. Plasma Phys. 87, 855870201; 44pp.CrossRefGoogle Scholar
Velasco, J.L., Calvo, I., Mulas, S., Sánchez, E., Parra, F.I. & Cappa, Á. and the W7-X Team 2021 A model for the fast evaluation of prompt losses of energetic ions in stellarators. Nucl. Fusion 61, 116059; 26pp.CrossRefGoogle Scholar
White, R.B. 2001 The Theory of Toroidally Confined Plasmas, 2nd edn, pp. 298–302. Imperial College Press.CrossRefGoogle Scholar