Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T22:25:24.789Z Has data issue: false hasContentIssue false

Lagrangian coherent structures and plasma transport processes

Published online by Cambridge University Press:  13 July 2015

M. V. Falessi*
Affiliation:
Dipartimento di Matematica e Fisica, Roma Tre University, Via della Vasca Navale 84, 00199 Rome, Italy
F. Pegoraro
Affiliation:
Dipartimento di Fisica, Pisa University, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
T. J. Schep
Affiliation:
Department of Physics, Eindhoven University of Technology, De Rondom 70, 5612 AP Eindhoven, The Netherlands
*
Email address for correspondence: falessi@fis.uniroma3.it

Abstract

A dynamical system framework is used to describe transport processes in plasmas embedded in a magnetic field. For periodic systems with one degree of freedom, the Poincaré map provides a splitting of the phase space into regions where particles have different kinds of motion: periodic, quasi-periodic or chaotic. The boundaries of these regions are transport barriers, i.e. a trajectory cannot cross such boundaries throughout the evolution of the system. Lagrangian coherent structures generalize this method to systems with the most general time dependence, splitting the phase space into regions with different qualitative behaviours. This leads to the definition of finite-time transport barriers, i.e. trajectories cannot cross the barrier for a finite amount of time. This methodology can be used to identify fast recirculating regions in the dynamical system and to characterize the transport between them.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avinash, K., Bulanov, S. V., Esirkepov, T., Kaw, P., Pegoraro, F., Sasorov, P. V. & Sen, A. 1998 Forced magnetic field line reconnection in electron magnetohydrodynamics. Phys. Plasmas 5 (8), 28492860.Google Scholar
Beyer, P., Garbet, X., Benkadda, S., Ghendrih, Ph. & Sarazin, Y. 2002 Electrostatic turbulence and transport with stochastic magnetic field lines. Plasma Phys. Control. Fusion 44 (10), 21672184.Google Scholar
Borgogno, D., Grasso, D., Pegoraro, F. & Schep, T. J. 2008 Stable and unstable invariant manifolds in a partially chaotic magnetic configuration generated by nonlinear reconnection. Phys. Plasmas 15 (10), 102308.Google Scholar
Borgogno, D, Grasso, D., Pegoraro, F. & Schep, T. J. 2011a Barriers in the transition to global chaos in collisionless magnetic reconnection. I. Ridges of the finite time Lyapunov exponent field. Phys. Plasmas 18 (10), 102307.Google Scholar
Borgogno, D., Grasso, D., Pegoraro, F. & Schep, T. J. 2011b Barriers in the transition to global chaos in collisionless magnetic reconnection. II. Field line spectroscopy. Phys. Plasmas 18 (10), 102308.Google Scholar
Borgogno, D., Grasso, D., Porcelli, F., Califano, F., Pegoraro, F. & Farina, D. 2005 Aspects of three-dimensional magnetic reconnection. Phys. Plasmas 12 (3), 032309.Google Scholar
Carlevaro, N., Falessi, M. V., Montani, G. & Zonca, F. 2015 Non-linear physics and transport features of the beam-plasma instability. J. Plasma Phys. (submitted).Google Scholar
Chian, A. C.-L., Rempel, E. L., Aulanier, G., Schmieder, B., Shadden, S. C., Welsch, B. T. & Yeates, A. R. 2014 Detection of coherent structures in photospheric turbulent flows. Astrophys. J. 786 (1), 5164.Google Scholar
Coronado, M., Vitela, E. J. & Akcasu, A. Z. 1992 Diffusion of charged particles in tokamak-like stochastic magnetic and electric fields. Phys. Fluids B 4 (12), 39353951.CrossRefGoogle Scholar
Coulliette, C., Lekien, F., Paduan, J. D., Haller, G. & Marsden, J. E. 2007 Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol. 41 (18), 65626572.CrossRefGoogle ScholarPubMed
Haller, G. 2011 A variational theory of hyperbolic Lagrangian coherent structures. Physica D 240 (7), 574598.Google Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.CrossRefGoogle Scholar
Hamlington, P. E., Poludnenko, A. Y. & Oran, E. S. 2011 Interactions between turbulence and flames in premixed reacting flows. Phys. Fluids 23 (12), 125111.CrossRefGoogle Scholar
Hatch, D. R., Pueschel, M. J., Jenko, F., Nevins, W. M., Terry, P. W. & Doerk, H. 2012 Origin of magnetic stochasticity and transport in plasma microturbulence. Phys. Rev. Lett. 108 (23), 235002.Google Scholar
Huhn, F., Kameke, A., Pérez-Muñuzuri, V., Olascoaga, M. J. & Beron-Vera, F. J. 2012 The impact of advective transport by the South Indian Ocean countercurrent on the Madagascar plankton bloom. Geophys. Res. Lett. 39 (6), 16.CrossRefGoogle Scholar
Kasilov, S. V., Reiter, D., Runov, A. M., Kernbichler, W. & Heyn, M. F. 2002 On the magnetic nature of electron transport barriers in tokamaks. Plasma Phys. Control. Fusion 44 (6), 9851004.Google Scholar
Matthaeus, W. H., Qin, G., Bieber, J. W. & Zank, G. P. 2003 Nonlinear collisionless perpendicular diffusion of charged particles. Astrophys. J. 590 (2), L53L56.Google Scholar
Onu, K., Huhn, F. & Haller, G. 2015 LCS Tool: a computational platform for Lagrangian coherent structures. J. Comput. Sci. 7, 2636.Google Scholar
Peacock, T. & Haller, G. 2013 Lagrangian coherent structures: the hidden skeleton of fluid flows. Phys. Today 66 (2), 4148.Google Scholar
Peng, J. & Dabiri, J. O. 2009 Transport of inertial particles by Lagrangian coherent structures: application to predator–prey interaction in jellyfish feeding. J. Fluid Mech. 623, 7584.CrossRefGoogle Scholar
Porcelli, F., Borgogno, D., Califano, F., Grasso, D., Ottaviani, M. & Pegoraro, F. 2002 Recent advances in collisionless magnetic reconnection. Plasma Phys. Control. Fusion 44 (12B), B389.Google Scholar
Rappazzo, A. F. & Parker, E. N. 2013 Current sheets formation in tangled coronal magnetic fields. Astrophys. J. Lett. 773 (1), L2.CrossRefGoogle Scholar
Rechester, A. B. & Rosenbluth, M. N. 1978 Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40 (1), 3841.CrossRefGoogle Scholar
Rempel, E. L., Chian, A. C.-L., Brandenburg, A., Muñoz, P. R. & Shadden, S. C. 2013 Coherent structures and the saturation of a nonlinear dynamo. J. Fluid Mech. 729, 309329.CrossRefGoogle Scholar
Shadden, S. C., Lekien, F. & Marsden, J. E. 2005 Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212 (3), 271304.Google Scholar
Shadden, S. C. & Taylor, C. A. 2008 Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Engng 36 (7), 11521162.Google Scholar
Tang, W., Mathur, M., Haller, G., Hahn, D. C. & Ruggiero, F. H. 2010 Lagrangian coherent structures near a subtropical jet stream. J. Atmos. Sci. 67 (7), 23072319.Google Scholar
White, R. B. & Wu, Y.1992 Collisionless transport in a stochastic magnetic field. Tech. Rep., Plasma Physics Laboratory, Princeton University, NJ.Google Scholar
Wiggins, S.1992 Chaotic transport in dynamical systems. NASA STI/Recon. Tech. Rep. A 92-28228.Google Scholar