Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:22:30.411Z Has data issue: false hasContentIssue false

Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations

Published online by Cambridge University Press:  13 July 2015

T. V. Liseykina*
Affiliation:
Institut für Physik, Universität Rostock, 18051 Rostock, Germany Institute of Computational Technologies SD RAS, Ave. Ak. Lavrentjev 6, 630090 Novosibirsk, Russia
G. I. Dudnikova
Affiliation:
Institute of Computational Technologies SD RAS, Ave. Ak. Lavrentjev 6, 630090 Novosibirsk, Russia
V. A. Vshivkov
Affiliation:
Institute of Computational Mathematics and Mathematical Geophysics SD RAS, Ave. Ak. Lavrentjev 6, 630090 Novosibirsk, Russia
M. A. Malkov
Affiliation:
CASS and Department of Physics, University of California San Diego, La Jolla, CA 92093-0424, USA
*
Email address for correspondence: tatyana.liseykina@uni-rostock.de

Abstract

Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriani, O., Barbarino, G. C., Bazilevskaya, G. A., Bellotti, R., Boezio, M., Bogomolov, E. A., Bonechi, L., Bongi, M., Bonvicini, V., Borisov, S., Bottai, S., Bruno, A., Cafagna, F., Campana, D., Carbone, R., Carlson, P., Casolino, M., Castellini, G., Consiglio, L., De Pascale, M. P., De Santis, C., De Simone, N., Di Felice, V., Galper, A. M., Gillard, W., Grishantseva, L., Jerse, G., Karelin, A. V., Koldashov, S. V., Krutkov, S. Y., Kvashnin, A. N., Leonov, A., Malakhov, V., Malvezzi, V., Marcelli, L., Mayorov, A. G., Menn, W., Mikhailov, V. V., Mocchiutti, E., Monaco, A., Mori, N., Nikonov, N., Osteria, G., Palma, F., Papini, P., Pearce, M., Picozza, P., Pizzolotto, C., Ricci, M., Ricciarini, S. B., Rossetto, L., Sarkar, R., Simon, M., Sparvoli, R., Spillantini, P., Stozhkov, Y. I., Vacchi, A., Vannuccini, E., Vasilyev, G., Voronov, S. A., Yurkin, Y. T., Wu, J., Zampa, G., Zampa, N. & Zverev, V. G. 2011 PAMELA measurements of cosmic-ray proton and helium spectra. Science 332 (6025), 6972.Google Scholar
Bell, A. R. 2014 Particle acceleration by shocks in supernova remnants. Braz. J. Phys. 44, 415425.Google Scholar
Blandford, R. & Eichler, D. 1987 Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 175.CrossRefGoogle Scholar
Blandford, R., Simeon, P. & Yuan, Y. 2014 Cosmic ray origins: an introduction. Nucl. Phys. B 256–257, 922.Google Scholar
Bulanov, S. V., Esirkepov, T. Zh., Khoroshkov, V. S., Kuznetsov, A. V. & Pegoraro, F. 2002 Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240247.CrossRefGoogle Scholar
Burgess, D., Möbius, E. & Scholer, M. 2012 Ion acceleration at the Earth’s bow shock. Space Sci. Rev. 173, 547.CrossRefGoogle Scholar
Caprioli, D., Pop, A.-R. & Spitkovsky, A. 2015 Simulations and theory of ion injection at non-relativistic collisionless shocks. Astrophys. J. Lett. 798, L28.Google Scholar
Dawson, J. M. 1983 Particle simulation of plasmas. Rev. Mod. Phys. 55, 403447.Google Scholar
Drury, L. O’C. 1983 An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 9731027.Google Scholar
Drury, L. O’C. 2012 Origin of cosmic rays. Astropart. Phys. 39, 5260.Google Scholar
Fiuza, F., Stockem, A., Boella, E., Fonseca, R. A., Silva, L. O., Haberberger, D., Tochitsky, S., Mori, W. B. & Joshi, C. 2013 Ion acceleration from laser-driven electrostatic shocks. Phys. Plasmas 20, 056304.Google Scholar
Gurevich, A. V. 1968 Distribution of captured particles in a potential well in the absence of collisions. Sov. J. Exp. Theor. Phys. 26, 575580.Google Scholar
Haberberger, D., Tochitsky, S., Fiuza, F., Gong, Ch., Fonseca, R. A., Silva, L. O., Mori, W. B. & Joshi, Ch. 2012 Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat. Phys. 8, 9599.Google Scholar
Kennel, C. F., Edmiston, J. P. & Hada, T. 1985 A quarter century of collisionless shock research. In Collisionless Shocks in the Heliosphere: A Tutorial Review, Geophysical Monograph Series, vol. 34, pp. 136. American Geophysical Union.Google Scholar
Macchi, A., Borghesi, M. & Passoni, M. 2013 Ion acceleration by superintense laser–plasma interaction. Rev. Mod. Phys. 85, 751793.Google Scholar
Macchi, A., Nindrayog, A. S. & Pegoraro, F. 2012 Solitary versus shock wave acceleration in laser–plasma interactions. Phys. Rev. E 85, 046402.Google Scholar
Malkov, M. A., Sagdeev, R., Dudnikova, G., Liseykina, T., Diamond, P., Liu, C.-S. & Su, J.-J.2014 Ion-acoustic shocks with reflected ions: implications for laser-based proton accelerators. Bulletin of the American Physical Society. 56th Meeting of the APS Division of Plasma Physics, Volume 59, Number 15. October 27–31, 2014, New Orleans, USA.Google Scholar
Malkov, M. A. & Drury, L. O’C. 2001 Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429481.Google Scholar
Moiseev, S. S. & Sagdeev, R. Z. 1963 Collisionless shock waves in a plasma in a weak magnetic field. J. Nucl. Energy 5, 4347.Google Scholar
Mourou, G. A., Tajima, T. & Bulanov, S. V. 2006 Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.Google Scholar
Palmer, C. A. J., Dover, N. P., Pogorelsky, I., Babzien, M., Dudnikova, G. I., Ispiriyan, M., Polyanskiy, M. N., Schreiber, J., Shkolnikov, P., Yakimenko, V. & Najmudin, Z. 2011 Monoenergetic proton beams accelerated by a radiation pressure driven shock. Phys. Rev. Lett. 106, 014801.Google Scholar
Papadopoulos, K. 1985 Microinstabilities and anomalous transport in collisionless shocks. In Collisionless Shocks in the Heliosphere: A Tutorial Review, Geophysical Monograph Series, vol. 34, pp. 5990. American Geophysical Union.Google Scholar
Romagnani, L., Bulanov, S. V., Borghesi, M., Audebert, P., Gauthier, J. C., Löwenbrück, K., Mackinnon, A. J., Patel, P., Pretzler, G., Toncian, T. & Willi, O. 2008 Observation of collisionless shocks in laser–plasma experiments. Phys. Rev. Lett. 101, 025004.Google Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 2391.Google Scholar
Sagdeev, R. Z., Malkov, M., Diamond, P., Dudnikova, G., Liu, Ch. & Su, J.-J.2013 Reflected ion acceleration by ion-acoustic shocks. Bulletin of the American Physical Society. 55th Meeting of the APS Division of Plasma Physics, Volume 58, Number 16. November 11–15, 2013, Denver, CO.Google Scholar
Sorasio, G., Marti, M., Fonseca, R. & Silva, L. O. 2006 Very high mach-number electrostatic shocks in collisionless plasmas. Phys. Rev. Lett. 96, 045005.Google Scholar