Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:26:19.018Z Has data issue: false hasContentIssue false

Ion temperature anisotropy effects on the dispersion relation and threshold conditions of a sheared current-driven electrostatic ion-acoustic instability with applications to the collisional high-latitude F-region

Published online by Cambridge University Press:  04 August 2014

Patrick J.G. Perron*
Affiliation:
Department of Physics, Royal Military College of Canada, Kingston, Ontario, CanadaK7K 7B4
J.-M. Noël
Affiliation:
Department of Physics, Royal Military College of Canada, Kingston, Ontario, CanadaK7K 7B4
J.-P. St-Maurice
Affiliation:
Institute of Space and Atmospheric Studies and Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaS7N 5A2
K. Kabin
Affiliation:
Department of Physics, Royal Military College of Canada, Kingston, Ontario, CanadaK7K 7B4
*
Email address for correspondence: patrick.perron@rmc.ca

Abstract

Plasma instabilities play a important role in producing small-scale irregularities in the ionosphere. In particular, current-driven electrostatic ion-acoustic (CDEIA) instabilities contribute to high-latitude F-region electrodynamics. Ion temperature anisotropies with enhanced perpendicular temperature often exist in the high-latitude F-region. In addition to temperature anisotropies, ion velocity shears are observed near auroral arc edges, sometimes coexisting with thermal ion upflow processes and field-aligned currents (FAC). We investigated whether ion temperature anisotropy lowers the threshold conditions required for the onset of sheared CDEIA instabilities. We generalised a dispersion relation to include ion thermal anisotropy, finite Larmor radius corrections and collisions. We derived new fluid-like analytical expressions for the threshold conditions required for instability that depend explicitly on ion temperature anisotropy. We studied how the instability threshold conditions vary as a function of the wave vector direction in both fluid and kinetic regimes. We found that, despite the dampening effect of collisions on ion-acoustic waves, ion temperature anisotropy lowers in some cases the threshold drift requirements for a large range of oblique wave vector angles. More importantly, realistic ion temperature anisotropies contribute to reducing the instability threshold velocity shears that are associated with small drift thresholds, for modes propagating almost perpendicularly to the geomagnetic field. Small shear thresholds that seem to be sustainable in the ionospheric F-region are obtained for low-frequency waves. Such instabilities could play a role in the direct generation of field-aligned irregularities in the collisional F-region that could be observed with the Super Dual Auroral Radar Network (SuperDARN) array of high-frequency radars. These modes would be very sensitive to the radar probing direction since they are restricted to very narrow angular intervals. The ion temperature anisotropy is an important parameter that needs to be considered in the studies of sheared and collisional CDEIA waves and instabilities in the high-latitude F-region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amatucci, W. E. 1999 Inhomogeneous plasma flows: A review of in situ observations and laboratory experiments. J. Geophys. Res.: Space Phys. 104 (A7), 1448114503.Google Scholar
Bahcivan, H., Nicolls, M. J. and Perry, G. 2013 Comparison of superDARN irregularity drift measurements and F-region ion velocities from the resolute bay ISR. J. Atmos. Sol.-Terr. Phy. 105–106 (0), 325331.Google Scholar
Basu, B. and Coppi, B. 1988 Fluctuations associated with sheared velocity regions near auroral arcs. Geophys. Res. Lett. 15 (5), 417420.Google Scholar
Basu, S., Basu, S., MacKenzie, E., Fougere, P. F., Coley, W. R., Maynard, N. C., Winningham, J. D., Sugiura, M., Hanson, W. B. and Hoegy, W. R. 1988 Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval. J. Geophys. Res. 93 (A1), 115136.CrossRefGoogle Scholar
Basu, B. and Coppi, B. 1989 Velocity shear and fluctuations in the auroral regions of the ionosphere. J. Geophys. Res. 94 (A5), 53165326.Google Scholar
Beynon, W. J. G. and Williams, P. J. S. 1978 Incoherent scatter of radio waves from the ionosphere. Rep. Prog. Phys. 41 (6), 909955.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. and Krook, M. 1954 A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.Google Scholar
Buneman, O. 1959 Dissipation of currents in ionized media. Phys. Rev. 115, 503517.Google Scholar
Chibisov, D. V., Mikhailenko, V. S. and Stepanov, K. N. 2011 The ion kinetic dAngelo mode. Phys. Plasmas 18, 102105102110.Google Scholar
Collis, P. N., Häggström, L., Kaila, K. and Rietveld, M. T. 1991 EISCAT radar observations of enhanced incoherent scatter spectra; their relation to red aurora and field-aligned currents. Geophys. Res. Lett. 18 (6), 10311034.Google Scholar
D'Angelo, N. 1965 KelvinHelmholtz instability in a fully ionized plasma in a magnetic field. Phys. Fluids 8, 17481750.Google Scholar
de, La Beaujardiere, O., Heelis, R. A. et al. 1984 Velocity spike at the poleward edge of the auroral zone. J. Geophys. Res. 89 (A3), 16271634.Google Scholar
Earle, G. D., Kelley, M. C. and Ganguli, G. 1989 Large velocity shears and associated electrostatic waves and turbulence in the auroral F-region. J. Geophys. Res. 94 (A11), 1532115333.CrossRefGoogle Scholar
Evans, J. V. 1969 Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE 57 (4), 496530.CrossRefGoogle Scholar
Foster, J. C., Del, Pozo, C., Groves, K. and St-Maurice, J.-P. 1988 Radar observations of the onset of current driven instabilities in the topside ionosphere. Geophys. Res. Lett. 15 (2), 160163.Google Scholar
Fried, B. D. and Gould, R. W. 1961 Longitudinal ion oscillations in a hot plasma. Phys. Fluids 4, 139147.CrossRefGoogle Scholar
Froula, D., Sheffield, J., Glenzer, S. H., Neville, C., Luhmann, J. 2010 Plasma Scattering of Electromagnetic Radiation: Theory and Measurement Techniques. Amsterdam: NY, Academic Press/Elsevier.Google Scholar
Gaimard, P., St-Maurice, J.-P., Lathuillere, C. and Hubert, D. 1998 On the improvement of analytical calculations of collisional auroral ion velocity distributions using recent monte carlo results. J. Geophys. Res. 103 (A3), 40794095.Google Scholar
Gary, S. P., Skoug, R. M., Steinberg, J. T. and Smith, C. W. 2001 Proton temperature anisotropy constraint in the solar wind: ACE observations. Geophys. Res. Lett. 28 (14), 27592762.Google Scholar
Gavrishchaka, V. V., Ganguli, S. B. and Ganguli, G. I. 1998 Origin of low-frequency oscillations in the ionosphere. Phys. Rev. Lett. 80 (4), 728731.Google Scholar
Gavrishchaka, V. V., Ganguli, S. B. and Ganguli, G. I. 1999 Electrostatic oscillations due to filamentary structures in the magnetic-field-aligned flow: The ion-acoustic branch. J. Geophys. Res. 104 (A6), 1268312694.Google Scholar
Gavrishchaka, V. V., Ganguli, G. I., Scales, W. A., Slinker, S. P., Chaston, C. C., McFadden, J. P., Ergun, R. E. and Carlson, C. W. 2000 Multiscale coherent structures and broadband waves due to parallel inhomogeneous flows. Phys. Rev. Lett. 85 (20), 42854288.CrossRefGoogle ScholarPubMed
Glatthor, N. and Hernandez, R. 1990 Temperature anisotropy of drifting ions in the auroral F-region, observed by EISCAT. J. Atmos. Terr. Phys. 52 (6), 545560.CrossRefGoogle Scholar
Greenwald, R. A., Baker, K. B., Dudeney, J. R., Pinnock, M., Jones, T. B., Thomas, E. C., Villain, J.-P., Cerisier, J.-C., Senior, C., Hanuise, C. et al. 1995 Darn/Superdarn. Space Sci. Rev. 71 (1-4), 761796.Google Scholar
Kagan, L. M. and St-Maurice, J. P. 2005 Origin of type-2 thermal-ion upflows in the auroral ionosphere. Ann. Geophys. 23, 1324.Google Scholar
Kasper, J. C., Lazarus, A. J., Gary, S. P. and Szabo, A. 2003 Solar wind temperature anisotropies. AIP Conf. Proc. 679 (1), 538541.Google Scholar
Kelley, M. C. 2009 The Earth's Ionosphere: Plasma Physics and Electrodynamics. Amsterdam: NY, Academic Press.Google Scholar
Kelley, M. C. and Carlson, C. W. 1977 Observations of intense velocity shear and associated electrostatic waves near an auroral arc. J. Geophys. Res. 82 (16), 23432348.CrossRefGoogle Scholar
Kindel, J. M. and Kennel, C. F. 1971 Topside current instabilities. J. Geophys. Res. 76 (13), 30553078.CrossRefGoogle Scholar
Kivanc, O. and Heelis, R. A. 1999 On relationships between horizontal velocity structure and thermal ion upwellings at high latitudes. Geophys. Res. Lett. 26 (13), 18291832.Google Scholar
Koepke, M. E. 2004 Sheared-flow-driven electrostatic waves in laboratory and space plasmas. Phys. Scr. 2004, 182187.Google Scholar
Koepke, M. E., Reynolds, E. W. et al. 2007 Simultaneous, co-located parallel-flow shear and perpendicular-flow shear in low-temperature, ionospheric-plasma relevant laboratory plasma. Plasma Phys. Control. Fusion 49 (5A), A145.Google Scholar
Koepke, M. E., Teodorescu, C. and Reynolds, E. W. 2003 Space relevant laboratory studies of ion-acoustic and ion-cyclotron waves driven by parallel-velocity shear. Plasma Phys. Control. Fusion 45, 869889.Google Scholar
Liu, H. and Lu, G. 2004 Velocity shear-related ion upflow in the low-altitude ionosphere. Ann. Geophys. 22 (4), 11491153.Google Scholar
Lockwood, M. and Winser, K. J. 1988 On the determination of ion temperature in the auroral F-region ionosphere. Planet. Space Sci. 36 (11), 12951304.Google Scholar
Loranc, M., Hanson, W. B., Heelis, R. A. and St-Maurice, J.-P. 1991 A morphological study of vertical ionospheric flows in the high-latitude F-region. J. Geophys. Res. 96 (A3), 36273646.CrossRefGoogle Scholar
Løvhaug, U. P. and Flå, T. 1986 Ion temperature anisotropy in the auroral F-region as measured with EISCAT. J. Atmos. Terr. Phys. 48 (9), 959971.Google Scholar
Lu, G., Reiff, P. H., Moore, T. E. and Heelis, R. A. 1992 Upflowing ionospheric ions in the auroral region. J. Geophys. Res. 97 (A11), 1685516863.Google Scholar
Michell, R. G., Lynch, K. A., Heinselman, C. J. & Stenbaek-Nielsen, H. C. 2008 PFISR nightside observations of naturally enhanced ion acoustic lines, and their relation to boundary auroral features. Ann. Geophys. 26, 36233639.Google Scholar
Michell, R. G., Lynch, K. A., Heinselman, C. J. and Stenbaek-Nielsen, H. C. 2009 High time resolution PFISR and optical observations of naturally enhanced ion acoustic lines. Ann. Geophys. 27, 14571467.Google Scholar
Michell, R. G. and Samara, M. 2010 High-resolution observations of naturally enhanced ion acoustic lines and accompanying auroral fine structures. J. Geophys. Res. 115 (A3), A03310.Google Scholar
Mikhailenko, V. S., Chibisov, D. V. and Koepke, M. E. 2012 Excitation mechanisms and spectral properties of the ion-cyclotron parallel-velocity shear driven instability. J. Geophys. Res. 117 (A4), 4322.Google Scholar
Mikhailenko, V. S., Chibisov, D. V. and Mikhailenko, V. V. 2006 Shear-flow-driven ion cyclotron instabilities of magnetic field-aligned flow of inhomogeneous plasma. Phys. Plasmas 13, 102105.Google Scholar
Mikhailenko, V. S., Mikhailenko, V. V. and Stepanov, K. N. 2008 Ion cyclotron instabilities of parallel shear flow of collisional plasma. Phys. Plasmas 15, 092901.Google Scholar
Noël, J. M. A., St-Maurice, J. P. and Blelly, P. L. 2000 Nonlinear model of short-scale electrodynamics in the auroral ionosphere. Ann. Geophys. 18, 11281144.Google Scholar
Noël, J. M. A., St-Maurice, J. P. and Blelly, P. L. 2005 The effect of E-region wave heating on electrodynamical structures. Ann. Geophys. 23 (6), 20812094.Google Scholar
Ogawa, Y., Fujii, R., Buchert, S. C., Nozawa, S., Watanabe, S. & Van Eyken, A. P. 2000 Simultaneous EISCAT svalbard and VHF radar observations of ion upflows at different aspect angles. Geophys. Res. Lett. 27 (1), 8184.Google Scholar
Ossakow, S. L. and Chaturvedi, P. K. 1979 Current convective instability in the diffuse aurora. Geophys. Res. Lett. 6 (4), 332334.Google Scholar
Perraut, S., Brekke, A., Baron, M. and Hubert, D. 1984 EISCAT measurements of ion temperatures which indicate non-isotropic ion velocity distributions. J. Atmos. Terr. Phys. 46 (6), 531543.Google Scholar
Perron, P. J. G., Noël, J. M. A., Kabin, K. and St-Maurice, J. P. 2013 Ion temperature anisotropy effects on threshold conditions of a shear-modified current driven electrostatic ion-acoustic instability in the topside auroral ionosphere. Ann. Geophys. 31 (3), 451457.Google Scholar
Perron, P. J. G., Noël, J. M. A. and St-Maurice, J. P. 2009 Velocity shear and current driven instability in a collisional F-region. Ann. Geophys. 27, 381394.Google Scholar
Ponomarenko, P. V., St-Maurice, J.-P., Waters, C. L., Gillies, R. G. and Koustov, A. V. 2009 Refractive index effects on the scatter volume location and doppler velocity estimates of ionospheric hf backscatter echoes. Ann. Geophys. 27 (11), 42074219.Google Scholar
Rietveld, M. T., Collis, P. N. and St-Maurice, J.-P. 1991 Naturally enhanced ion acoustic waves in the auroral ionosphere observed with the EISCAT 933-Mhz radar. J. Geophys. Res. 96 (A11), 1929119305.Google Scholar
Rother, M., Schlegel, K. and Lühr, H. 2007 CHAMP observation of intense kilometer-scale field-aligned currents, evidence for an ionospheric Alfvén resonator. Ann. Geophys. 25 (7), 16031615.Google Scholar
Ruohoniemi, J. M., Greenwald, R. A., Baker, K. B., Villain, J. P. and McCready, M. A. 1987 Drift motions of small-scale irregularities in the high-latitude F region: An experimental comparison with plasma drift motions. JGR: Space Physics (1978–2012) 92 (A5), 45534564.Google Scholar
Scime, E. E., Keesee, A. M., Spangler, R. S., Koepke, M. E., Teodorescu, C. and Reynolds, E. W. 2002 Evidence for thermal anisotropy effects on shear modified ion acoustic instabilities. Phys. Plasmas 9, 43994401.CrossRefGoogle Scholar
Sedgemore-Schulthess, F. and St-Maurice, J. P. 2001 Naturally enhanced ion-acoustic spectra and their interpretation. Surv. Geophys. 22 (1), 5592.Google Scholar
Spangler, R. S., Scime, E. E. and Ganguli, G. I. 2002 Parallel inhomogeneous flows in a thermally anisotropic plasma: The electrostatic ion-acoustic branch. Phys. Plasmas 9, 25262533.Google Scholar
Stix, T. H. 1992 Waves in Plasmas. New York: American Institute of Physics.Google Scholar
St-Maurice, J.-P. and Hamza, A. M. 2009 Small scale irregularities at high latitudes, Characterising the ionosphere, Ed. G. Wyman; Technical Report RTO-TR-IST-051.Google Scholar
St-Maurice, J.-P., Kofman, W. and James, D. 1996 In situ generation of intense parallel electric fields in the lower ionosphere. J. Geophys. Res. 101 (A1), 335356.Google Scholar
St-Maurice, J., Noël, J.-M. and Perron, P. J. G. 2006 An assessment of how a combination of shears, field-aligned currents and collisions affect F-region ionospheric instabilities. J. Plasma Physics 73 (1), 6988.Google Scholar
St-Maurice, J-P and Schunk, R. W. 1977 Auroral ion velocity distributions for a polarization collision model. Planet. Space Sci. 25 (3), 243260.Google Scholar
St-Maurice, J.-P. and Schunk, R. W. 1979 Ion velocity distributions in the high-latitude ionosphere. Rev. Geophys. Space Phys. 17 (1), 99133.Google Scholar
Teodorescu, C., Koepke, M. E. and Reynolds, E. W. 2003 On the role of ion temperature anisotropy in the growth and propagation of shear-modified ion-acoustic waves. J. Geophys. Res. 108, 10431053.Google Scholar
Tsunoda, R. T. 1988 High-latitude F region irregularities: A review and synthesis. Reviews of Geophys. 26 (4), 719760.Google Scholar
Tsunoda, R. T., Livingston, R. C., Vickrey, J. F., Heelis, R. A., Hanson, W. B., Rich, F. J. and Bythrow, P. F. 1989 Dayside observations of thermal-ion upwellings at 800-km altitude: an ionospheric signature of the cleft ion fountain. J. Geophys. Res. 94 (A11), 1527715290.Google Scholar
Wahlund, J.-E., Opgenoorth, H. J., Häggström, I., Winser, K. J. and Jones, G. O. L. 1992 EISCAT observations of topside ionospheric ion outflows during auroral activity: Revisited. J. Geophys. Res. 97 (A3), 30193037.Google Scholar
Walker, D. N., Amatucci, W. E., Antoniades, J. A., Ganguli, G., Bowles, J. H., Duncan, D., Gavrishchaka, V. and Koepke, M. E. 1997 Perpendicular ion heating by velocity-shear-driven plasma waves. Geophys. Res. Lett. 24, 11871190.Google Scholar
Whalen, B. A., Green, D. W. and McDiarmid, I. B. 1974 Observations of ionospheric ion flow and related convective electric fields in and near an auroral arc. J. Geophys. Res. 79 (19), 28352842.Google Scholar
Winser, K. J., Lockwood, M. and Jones, G. O. L. 1987 Non-thermal plasma observations using EISCAT: Aspect angle dependence. Geophys. Res. Lett. 14 (9), 957960.CrossRefGoogle Scholar
Xu, L., Koustov, A. V., Thayer, J. and McCready, M. A. 2001 Superdarn convection and Sondrestrom plasma drift. Ann. Geophys. 19 (7), 749759.Google Scholar