Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T23:37:03.808Z Has data issue: false hasContentIssue false

Image processing of argon glow discharge plasma using interferometry

Published online by Cambridge University Press:  13 July 2015

A. M. Hamed*
Affiliation:
Physics Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
M. A. Saudy
Affiliation:
Physics Department, Faculty of Science, Ain Shams University, 11566 Cairo, Egypt
*
Email address for correspondence: amhamed73@hotmail.com

Abstract

In this paper, a method of processing argon plasma images, obtained from the DC pseudo glow discharge technique, using two- and multiple-beam interference is suggested. This method is based on measuring the image fringe shift from the background interference fringes. Hence, this mapping of intensity shift is related to the electron density distribution of the argon plasma. Also, the refractive index of the plasma is computed from the electron density values. The contrast of the interferometer images in presence of plasma shift is investigated in both cases of two- and multiple-beam interference.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barakat, N. 1971 Interferometric studies of fibers. Textile Res. J. 41, 167.CrossRefGoogle Scholar
Barakat, N. & Mokhtar, S. 1963 On the factors contributing to the formation of multiple-beam Fizeau fringes. J. Opt. Soc. Amer. 53, 300301.CrossRefGoogle Scholar
Garnov, S. V., Konov, V. I., Malyutin, A. A., Tsarkova, O. G., Yatskovsky, S. & Dausinger, F. 2003 High resolution interferometric diagnostics of plasma produced by ultra-short laser pulses. Laser Phys. 13, 386396.Google Scholar
Hamed, A. M.1976 Some applications of scattered light and multiple beam interference using coherent light, MSc thesis, Ain Shams University, Cairo, Egypt.Google Scholar
Hamed, A. M. 2008 Modeling of the fringe shift in multiple beam interference in glass for glass fibers. Pramana J. Phys. 70, 643648.CrossRefGoogle Scholar
Hamed, A. M. & Saudy, M. A. 2014 Holographic imaging of argon plasma images. Opt. Photon. J. 4, 136142.CrossRefGoogle Scholar
Hug, W. F., Evans, D., Tankin, R. S. & Cambel, A. B. 1967 Measured index of refraction for argon plasma. Phys. Rev. 162, 117.CrossRefGoogle Scholar
Jahoda, F. C., Jeffries, R. A. & Sawyer, G. A. 1967 Fractional fringe holographic plasma interferometry. Appl. Opt. 6, 14071410.CrossRefGoogle Scholar
Keyser, C., Schriever, G., Richardson, M. & Turcu, E. 2003 Studies of high-repetition-rate laser plasma EUV sources from droplet targets. Appl. Phys. A 77, 217221.CrossRefGoogle Scholar
Kodal, A., Majumder, S. & Deka, U. 2011 Measurement of plasma parameters using digital image processing technique. Proc. Int. J. Comput. Appl. 2227.Google Scholar
Kreis, T. 1996 Holographic Interferometry: Principles and Methods. Akademie.Google Scholar
Mikš, A. & Novak, J. 2001 Application of multi-step algorithms for measurement deformation. In SPIE Proceedings, Washington, vol. 4398.Google Scholar
Osten, W., Baumbach, T., Seebacher, S. & Juptner, W. 2001 Automatic processing of fringe pattern. In Proceedings of 4th International Workshop on Automatic Processing of Fringe Patterns (ed. Juptner, W. & Osten, W.), pp. 373382. Akademie.Google Scholar
Robinson, D. W. & Reid, G. T. 1993 Interferogram Analysis: Digital Fringe Pattern Measurement Techniques. Institute of Physics.Google Scholar
Saudy, M. A. 2009 DC pseudo glow discharge in nitrogen gas. Plasma Devices Oper. 17, 8896.CrossRefGoogle Scholar
Scime, E. E., Boivin, R. F., Kline, J. L. & Balkey, M. M. 2001 Microwave interferometer of steady state plasma. Rev. Sci. Instrum. 72, 16721676.CrossRefGoogle Scholar
Da Silva, L. B., Barbee, T. W. Jr, Cauble, R., Celliers, P., Ciarlo, D., Moreno, J. C., Mrowka, S., Trebes, J. E., Wan, A. S. & Weber, F. 1995 Development of XUV interferometry (155 Å) using a soft x-ray laser. In SPIE 40th Annu. Meet., San Diego, CA, 9–14 July.CrossRefGoogle Scholar
Tolansky, S. 1960 Surface Micro-Topography. Longmans Green.Google Scholar
Wahlstrand, J. K., Cheng, Y. H., Chen, Y. H. & Milchberg, H. M. 2011 Optical nonlinearity in Ar and $\text{N}_{2}$ near the ionization threshold. Phys. Rev. Lett. 107, 15.CrossRefGoogle Scholar
Yatagai, T. & Nakadate, S. 1982 Automatic fringe analysis using digital image processing technique. Opt. Engng. 21, 432435.CrossRefGoogle Scholar
Yun, C. Y., Yang, S., Zhi, H. A. & Hua, L. Z. 2008 Dependence of arc plasma dispersion capability on its temperature. Chinese Phys. Lett. 25, 42584261.CrossRefGoogle Scholar