Published online by Cambridge University Press: 11 February 2013
A spiraling ion beam propagating through a magnetized plasma cylinder containing K+ light positive ions, electrons, and C7F14− heavy negative ions drives electrostatic ion–cyclotron waves to instability via cyclotron interaction. Higher harmonics of the beam cyclotron frequency can be generated in this way. The unstable mode frequencies and growth rates of both unstable light positive ions and heavy negative ions increase with the relative density of heavy negative ions. Moreover, the growth rate of unstable modes scales as the one-third power of the beam density. The growth rate of unstable modes increases with harmonic number. The frequencies of both unstable modes also increase with magnetic fields. In addition, the real part of both unstable modes (K+ and C7F14−) increases with the beam energy and scales as almost one-half power of the beam energy.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.