Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T18:55:57.414Z Has data issue: false hasContentIssue false

Geometric particle-in-cell methods for the Vlasov–Maxwell equations with spin effects

Published online by Cambridge University Press:  28 May 2021

Nicolas Crouseilles*
Affiliation:
Université de Rennes, Inria Rennes (Mingus team) and IRMAR UMR CNRS 6625, F-35042Rennes, France
Paul-Antoine Hervieux
Affiliation:
Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000Strasbourg, France
Yingzhe Li
Affiliation:
Max Planck Institute for Plasma Physics, Boltzmannstrasse 2, 85748Garching, Germany
Giovanni Manfredi*
Affiliation:
Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000Strasbourg, France
Yajuan Sun
Affiliation:
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, University of Chinese Academy of Sciences, 100049Beijing, PR China
*

Abstract

We propose a numerical scheme to solve the semiclassical Vlasov–Maxwell equations for electrons with spin. The electron gas is described by a distribution function $f(t,{\boldsymbol x},{{{\boldsymbol p}}}, {\boldsymbol s})$ that evolves in an extended 9-dimensional phase space $({\boldsymbol x},{{{\boldsymbol p}}}, {\boldsymbol s})$, where $\boldsymbol s$ represents the spin vector. Using suitable approximations and symmetries, the extended phase space can be reduced to five dimensions: $(x,{{p_x}}, {\boldsymbol s})$. It can be shown that the spin Vlasov–Maxwell equations enjoy a Hamiltonian structure that motivates the use of the recently developed geometric particle-in-cell (PIC) methods. Here, the geometric PIC approach is generalized to the case of electrons with spin. Total energy conservation is very well satisfied, with a relative error below $0.05\,\%$. As a relevant example, we study the stimulated Raman scattering of an electromagnetic wave interacting with an underdense plasma, where the electrons are partially or fully spin polarized. It is shown that the Raman instability is very effective in destroying the electron polarization.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, A. & Steinrück, H. 1989 The electromagnetic Wigner equation for an electron with spin. Z. Angew. Math. Phys. 40 (6), 793815.CrossRefGoogle Scholar
Asenjo, F.A., Zamanian, J., Marklund, M., Brodin, G. & Johansson, P. 2012 Semi-relativistic effects in spin-1/2 quantum plasmas. New J. Phys. 14 (7), 073042.CrossRefGoogle Scholar
Beaurepaire, E., Merle, J.C., Daunois, A. & Bigot, J.Y. 1996 Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76 (22), 42504253.CrossRefGoogle ScholarPubMed
Bigot, J.Y. & Vomir, M. 2013 Ultrafast magnetization dynamics of nanostructures. Ann. Phys. 525, 230.CrossRefGoogle Scholar
Bigot, J.Y., Vomir, M. & Beaurepaire, E. 2009 Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 5 (7), 515520.CrossRefGoogle Scholar
Brodin, G., Holkundkar, A. & Marklund, M. 2013 Particle-in-cell simulations of electron spin effects in plasmas. J. Plasma Phys. 79 (4), 377382.CrossRefGoogle Scholar
Brodin, G., Marklund, M., Zamanian, J., Ericsson, S. & Mana, P.L. 2008 Effects of the g-factor in semiclassical kinetic plasma theory. Phys. Rev. Lett. 101 (24), 245002.CrossRefGoogle ScholarPubMed
Brodin, G., Marklund, M., Zamanian, J. & Stefan, M. 2011 Spin and magnetization effects in plasmas. Plasma Phys. Control. Fusion 53 (7), 074013.CrossRefGoogle Scholar
Brodin, G. & Stefan, M. 2013 Kinetic theory of fully degenerate electrons in the long scale limit. Phys. Rev. E 88, 023107.CrossRefGoogle Scholar
Burby, J.W. 2017 Finite-dimensional collisionless kinetic theory. Phys. Plasmas 24, 032101.CrossRefGoogle Scholar
Casas, F., Crouseilles, N., Faou, E. & Mehrenberger, M. 2017 High-order hamiltonian splitting for the Vlasov–Poisson equations. Numer. Math. 135 (3), 769801.CrossRefGoogle Scholar
Cowley, S.C., Kulsrud, R.M. & Valeo, E. 1986 A kinetic equation for spin-polarized plasmas. Phys. Fluids 29 (2), 430441.CrossRefGoogle Scholar
Crouseilles, N., Einkemmer, L. & Faou, E. 2015 Hamiltonian splitting for the Vlasov–Maxwell equations. J. Comput. Phys. 283, 224240.CrossRefGoogle Scholar
Dauger, D.E., Decyk, V.K. & Dawson, J.M. 2005 Using semiclassical trajectories for the time-evolution of interacting quantum-mechanical systems. J. Comput. Phys. 209 (2), 559581.CrossRefGoogle Scholar
Forslund, D.W., Kindel, J.M. & Lindman, E.L. 1975 Theory of stimulated scattering processes in laser-irradiated plasmas. Phys. Fluid 18, 10021016.CrossRefGoogle Scholar
Ghizzo, A., Bertrand, P., Shoucri, M., Johnston, T., Fijalkow, E. & Feix, M. 1990 A Vlasov code for the numerical simulation of stimulated Raman scattering. J. Comput. Phys. 90, 431457.CrossRefGoogle Scholar
Hairer, E., Lubich, C. & Wanner, G. 2002 Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. In Springer Series in Computational Mathematics. Springer.CrossRefGoogle Scholar
He, Y., Qin, H., Sun, Y., Xiao, J., Zhang, R. & Liu, J. 2015 Hamiltonian integration methods for Vlasov–Maxwell equations. Phys. Plasmas 22, 124503.CrossRefGoogle Scholar
He, Y., Sun, Y., Qin, H. & Liu, J. 2016 Hamiltonian particle-in-cell methods for Vlasov–Maxwell equations. Phys. Plasmas 23 (9), 092108.CrossRefGoogle Scholar
Huot, F., Ghizzo, A., Bertrand, P., Sonnendrücker, E. & Coulaud, O. 2003 Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov–Maxwell system. J. Comput. Phys. 185 (2), 512531.CrossRefGoogle Scholar
Hurst, J., Hervieux, P.-A. & Manfredi, G. 2017 Phase-space methods for the spin dynamics in condensed matter systems. Philos. Trans. R. Soc. A 375, 20160199.CrossRefGoogle ScholarPubMed
Hurst, J., Hervieux, P.-A. & Manfredi, G. 2018 Spin current generation by ultrafast laser pulses in ferromagnetic nickel films. Phys. Rev. B 97, 014424.CrossRefGoogle Scholar
Hurst, J., Morandi, O., Manfredi, G. & Hervieux, P.-A. 2014 Semiclassical Vlasov and fluid models for an electron gas with spin effects. Eur. Phys. J. D 68 (6), 176.CrossRefGoogle Scholar
Kraus, M., Kormann, K., Morrison, P. & Sonnendrücker, E. 2017 GEMPIC: geometric electromagnetic Particle-In-Cell methods. J. Plasma Phys. 83 (4), 905830401.CrossRefGoogle Scholar
Krieger, K., Dewhurst, J.K., Elliott, P., Sharma, S. & Gross, E.K. 2015 Laser-induced demagnetization at ultrashort time scales: predictions of TDDFT. J. Chem. Theory Comput. 11, 4870.CrossRefGoogle ScholarPubMed
Li, F., Decyk, V.K., Miller, K.G., Tableman, A., Tsung, F.S., Vranic, M., Fonseca, R.A. & Mori, W.B. 2021 Accurately simulating nine-dimensional phase space of relativistic particles in strong fields. J. Comput. Phys. 438, 110367.CrossRefGoogle Scholar
Li, Y., He, Y., Sun, Y., Niesen, J., Qin, H. & Liu, J. 2019 Solving the Vlasov–Maxwell equations using Hamiltonian splitting. J. Comput. Phys. 396, 381399.CrossRefGoogle Scholar
Li, Y., Sun, Y. & Crouseilles, N. 2020 Numerical simulations of one laser-plasma model based on Poisson structure. J. Comput. Phys. 405, 109172.CrossRefGoogle Scholar
Manfredi, G., Hervieux, P.-A. & Hurst, J. 2019 Phase-space modeling of solid-state plasmas – A journey from classical to quantum. Rev. Mod. Plasma Phys. 3, 13.CrossRefGoogle Scholar
Marklund, M. & Morrison, P. 2011 Gauge-free Hamiltonian structure of the spin Maxwell–Vlasov equations. Phys. Lett. A 375 (24), 23622365.CrossRefGoogle Scholar
Marklund, M., Zamanian, J. & Brodin, G. 2010 Spin kinetic theory – quantum kinetic theory in extended phase space. Transp. Theory Stat. Phys. 39 (5), 502523.CrossRefGoogle Scholar
Marsden, J. & Weinstein, A. 1982 The Hamiltonian structure of the Maxwell–Vlasov equations. Physica D 4 (3), 394406.CrossRefGoogle Scholar
Mehdaoui, B., Tan, R.P., Meffre, A., Carrey, J., Lachaize, S., Chaudret, B. & Respaud, M. 2013 Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: Theoretical and experimental results. Phys. Rev. B 87, 174419.CrossRefGoogle Scholar
Moldabekov, Z.A., Bonitz, M. & Ramazanov, T.S. 2018 Theoretical foundations of quantum hydrodynamics for plasmas. Phys. Plasmas 25, 031903.CrossRefGoogle Scholar
Morrison, P. 2017 Structure and structure-preserving algorithms for plasma physics. Phys. Plasmas 24, 055502.CrossRefGoogle Scholar
Nie, Z., Li, F., Morales, F., Patchkovskii, S., Smirnova, O., An, W., Nambu, N., Matteo, D., Marsh, K.A., Tsung, F., et al. 2021 In Situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator. Phys. Rev. Lett. 126, 054801.CrossRefGoogle Scholar
Qin, H., Liu, J., Xiao, J., Zhang, R., He, Y., Wang, Y., Sun, Y., Burby, J.W., Ellison, L. & Zhou, Y. 2015 Canonical symplectic Particle-In-Cell method for long-term large-scale simulations of the Vlasov–Maxwell equations. Nucl. Fusion 56 (1), 014001.CrossRefGoogle Scholar
Tonge, J., Dauger, D.E. & Decyk, V.K. 2004 Two-dimensional semiclassical particle-in-cell code for simulation of quantum plasmas. Comput. Phys. Commun. 164 (1-3), 279285.CrossRefGoogle Scholar
Wen, M., Keitel, C.H. & Bauke, H. 2017 Spin-one-half particles in strong electromagnetic fields: spin effects and radiation reaction. Phys. Rev. A 95, 042102.CrossRefGoogle Scholar
Wen, M., Tamburini, M. & Keitel, C.H. 2019 Polarized laser-wakefield-accelerated kiloampere electron beams. Phys. Rev. Lett. 122, 214801.CrossRefGoogle ScholarPubMed
Wu, Y., Ji, L., Geng, X., Thomas, J., Büscher, M., Pukhov, A., Hützen, A., Zhang, L., Shen, B. & Li, R. 2020 Spin filter for polarized electron acceleration in plasma wakefields. Phys. Rev. Appl. 13, 044064.CrossRefGoogle Scholar
Wu, Y., Ji, L., Geng, X., Yu, Q., Wang, N., Feng, B., Guo, Z., Wang, W., Qin, C., Yan, X., et al. 2019 Polarized electron-beam acceleration driven by vortex laser pulse. New J. Phys. 11, 073052.CrossRefGoogle Scholar
Xiao, J., Qin, H., Liu, J., He, Y., Zhang, R. & Sun, Y. 2015 Explicit high-order non-canonical symplectic Particle-In-Cell algorithms for Vlasov–Maxwell systems. Phys. Plasmas 22 (11), 112504.CrossRefGoogle Scholar
Zamanian, J., Marklund, M. & Brodin, G. 2010 a Scalar quantum kinetic theory for spin-1/2 particles: mean field theory. New J. Phys. 12 (4), 043019.CrossRefGoogle Scholar
Zamanian, J., Stefan, M., Marklund, M. & Brodin, G. 2010 b From extended phase space dynamics to fluid theory. Phys. Plasmas 17 (10), 102109.CrossRefGoogle Scholar