Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T12:06:10.676Z Has data issue: false hasContentIssue false

Generalized permittivity tensor for the description of waves in general relativistic plasma around a Schwarzschild black hole

Published online by Cambridge University Press:  09 April 2014

R. Ramezani-Arani*
Affiliation:
Department of Elementary Particles, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran
A. Abdoli-Arani
Affiliation:
Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran
H. Shokrgozar-Arani
Affiliation:
Department of Elementary Particles, Faculty of Physics, University of Kashan, Kashan, Islamic Republic of Iran
*
Email address for correspondence: ramarani@kashanu.ac.ir

Abstract

The effects of gravitation on the permittivity tensor in the relativistic electron--positron or ions plasma in a frame of reformulated relativistic two-fluid equations by gravitational effects due to the event horizon using the 3 + 1 formalism of general relativity are investigated. The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The elements of the generalized permittivity tensor in this configuration are obtained. It is shown that the permittivity tensor could be written as a summation of two parts: Hermitian and non-Hermitian parts. Furthermore, the generalized dispersion relations are investigated for transverse and longitudinal modes. In the absence of gravitation effects, correctness of the obtained results is confirmed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afshordi, N., Loh, Y.-S. and Strauss, M. A. 2004 Phys. Rev. D 69, 083524.Google Scholar
Alexandrov, A. F., Bogdankevich, L. S. and Rukhadze, A. A. 1984 Principle of Plasma Electrodynamics. Heidelberg: Springer Verlag.Google Scholar
AtiqurRahman, M. Rahman, M. 2012 Astrophys. Space Sci. 341, 477.Google Scholar
Atiqur Rahman, M. 2013 Int. J. Mod. Phys. D 22, 1350036.Google Scholar
Buzzi, V., Hines, K. C. and Treumann, R. A. 1995a Phys. Rev. D 51, 6663.Google Scholar
Buzzi, V., Hines, K. C. and Treumann, R. A. 1995b Phys. Rev. D 51, 6677.Google Scholar
Hossain Ali, M. and AtiqurRahman, M. Rahman, M. 2009 Int. J. Theor. Phys. 48 (6), 17171735.Google Scholar
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. New York: McGraw-Hill.Google Scholar
Macdonald, D. A. and Thorne, K. S. 1982 Mon. Not. R. Astron. Soc. 198, 345.Google Scholar
Mazur, P. O. and Mottola, E. 2001 Phys. Rev. D 64, 104022.Google Scholar
Padmanabhan, N., et al. 2004 Phys. Rev. D 70, 103501.Google Scholar
Price, R. H. and Thorne, K. S. 1986 Phys. Rev. D 33, 915.Google Scholar
Sakai, J. and Kawata, T. 1980 J. Phys. Soc. Japan 49, 747.Google Scholar
Thorne, K. S. and Macdonald, D. A. 1982 Mon. Not. R. Astron. Soc. 198, 339.Google Scholar
Thorne, K. S., Price, R. H. and Macdonald, D. A. 1986 Black Holes: The Membrane Paradigm. New Haven: Yale University Press.Google Scholar
Zhang, Xi. H. 1989a Phys. Rev. D 39, 2933.Google Scholar
Zhang, Xi. H. 1989b Phys. Rev. D 40, 3858.Google Scholar